Imperial College London


Faculty of EngineeringDepartment of Civil and Environmental Engineering

Research Fellow



l.modenese Website




228BSkempton BuildingSouth Kensington Campus





Dr Luca Modenese has wide interests in the field of computational biomechanics, ranging from developing methods to generate computational models of the musculoskeletal anatomy to using advanced dynamic analyses to understand the principles underlying human motion and motor control. These research topics of computational nature are always strictly connected to clinical applications, thanks to the collaboration with clinical figures such as gait analysis laboratories and surgeons. 

Education and background

Luca Modenese was awarded a degree (summa cum laude) in Mechanical Engineering from the University of Padua in 2008 (Department of Industrial Engineering). After a brief period as Research Assistant, Luca started his doctoral training at Imperial College London, based in the Structural Biomechanics group. Luca received his PhD in 2013 and moved to Griffith University for a postdoc in the Centre for Musculoskeletal Research  (now part of Menzie Health Institute Queensland), under the supervision of Prof. David Lloyd. During this period, he was awarded a visiting scholar fellowship to visit the Neuromuscular Biomechanics Lab at Stanford University. He also spent time as visiting researcher at the Auckland Bioengineering Institute and University of Padua. In 2015, Dr Modenese moved to the Deparment of Mechanical Engineering of Sheffield University (INSIGNEO Institute for in silico Medicine). During this appointment, he was involved in the European Project MD-Paedigree and the EPSRC project MultiSim, developing methods to generate patient-specific musculoskeletal models.

In 2017 Luca was awarded a prestigious Imperial College Research Fellowship for a project aiming to optimize the outcome of surgical interventions using a combination of advanced computational methods including patient-specific neuro-musculoskeletal modelling, finite element analysis and predictive simulations.



Saxby DJ, Killen BA, Pizzolato C, et al., 2020, Machine learning methods to support personalized neuromusculoskeletal modelling., Biomech Model Mechanobiol, Vol:19, Pages:1169-1185

Modenese L, Kohout J, 2020, Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models, Annals of Biomedical Engineering, Vol:48, ISSN:0090-6964, Pages:1793-1804

Benemerito I, Modenese L, Montefiori E, et al., 2020, An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol:234, ISSN:0954-4119, Pages:507-516

van Veen B, Montefiori E, Modenese L, et al., 2019, Muscle recruitment strategies can reduce joint loading during level walking, Journal of Biomechanics, Vol:97, ISSN:0021-9290

Montefiori E, Modenese L, Di Marco R, et al., 2019, Linking joint impairment and gait biomechanics in patients with juvenile idiopathic arthritis, Annual Review of Biomedical Engineering, Vol:47, ISSN:1523-9829, Pages:2155-2167

More Publications