Imperial College London

DrMartinBidartondo

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Reader in Molecular Ecology
 
 
 
//

Contact

 

+44 (0)20 8332 5332m.bidartondo Website

 
 
//

Location

 

Jodrell Gate, Royal Botanic Gardens, Kew, TW9 3DS

//

Summary

 

Publications

Publication Type
Year
to

74 results found

Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJet al., 2018, From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi., Annals of Botany, Vol: 121, Pages: 221-227, ISSN: 0305-7364

Background and Aims: The rhizoids of leafy liverworts (Jungermanniales, Marchantiophyta) are commonly colonized by the ascomycete fungus Pezoloma ericae. These associations are hypothesized to be functionally analogous to the ericoid mycorrhizas (ErMs) formed by P. ericae with the roots of Ericaceae plants in terms of bi-directional phosphorus for carbon exchange; however, this remains unproven. Here, we test whether associations between the leafy liverwort Cephalozia bicuspidata and P. ericae are mutualistic. Methods: We measured movement of phosphorus and carbon between C. bicuspidata and P. ericae using [33P]orthophosphate and 14CO2 isotope tracers in monoxenic cultures. We also measured leafy liverwort growth, with and without P. ericae. Key Results: We present the first demonstration of nutritionally mutualistic symbiosis between a non-vascular plant and an ErM-forming fungus, showing transfer of fungal-acquired P to the liverwort and of liverwort-fixed C to the fungus alongside increased growth in fungus-colonized liverworts. Conclusions: Thus, this ascomycete-liverwort symbiosis can now be described as mycorrhiza-like, providing further insights into ericoid mycorrhizal evolution and adding Ascomycota fungi to mycorrhizal fungal groups engaging in mutualisms with plants across the land plant phylogeny. As P. ericae also colonizes the rhizoids of Schistochilaceae liverworts, which originated in the Triassic and are sister to all other jungermannialean liverworts associated with fungi, our findings point toward an early origin of ascomycete-liverwort symbioses, possibly pre-dating their evolution in the Ericales by some 150 million years.

JOURNAL ARTICLE

Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, Savolainen Vet al., 2018, Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island, NEW PHYTOLOGIST, Vol: 217, Pages: 1254-1266, ISSN: 0028-646X

JOURNAL ARTICLE

Schweiger JM-I, Bidartondo MI, Gebauer G, 2018, Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi, FUNCTIONAL ECOLOGY, Vol: 32, Pages: 870-881, ISSN: 0269-8463

JOURNAL ARTICLE

van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MIet al., 2018, Environment and host as large-scale controls of ectomycorrhizal fungi., Nature

Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

JOURNAL ARTICLE

Bidartondo MI, Hijri M, 2017, The Ninth International Conference on Mycorrhiza in Prague: across mycorrhizal symbioses from molecules to global scales., Mycorrhiza, Vol: 28, Pages: 203-205, ISSN: 0940-6360

JOURNAL ARTICLE

Brunner I, Frey B, Hartmann M, Zimmermann S, Graf F, Suz LM, Niskanen T, Bidartondo MI, Senn-Irlet Bet al., 2017, Ecology of Alpine Macrofungi - Combining Historical with Recent Data, FRONTIERS IN MICROBIOLOGY, Vol: 8, ISSN: 1664-302X

JOURNAL ARTICLE

Desiro A, Rimington WR, Jacob A, Pol NV, Smith ME, Trappe JM, Bidartondo MI, Bonito Get al., 2017, Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants, IMA FUNGUS, Vol: 8, Pages: 245-+, ISSN: 2210-6340

JOURNAL ARTICLE

Gomes SIF, Aguirre-Gutierrez J, Bidartondo MI, Merckx VSFTet al., 2017, Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants, NEW PHYTOLOGIST, Vol: 213, Pages: 1418-1427, ISSN: 0028-646X

JOURNAL ARTICLE

Hoysted GA, Kowal J, Jacob A, Rimington WR, Duckett JG, Pressel S, Orchard S, Ryan MH, Field KJ, Bidartondo MIet al., 2017, A mycorrhizal revolution., Curr Opin Plant Biol, Vol: 44, Pages: 1-6

It has long been postulated that symbiotic fungi facilitated plant migrations onto land through enhancing the scavenging of mineral nutrients and exchanging these for photosynthetically fixed organic carbon. Today, land plant-fungal symbioses are both widespread and diverse. Recent discoveries show that a variety of potential fungal associates were likely available to the earliest land plants, and that these early partnerships were probably affected by changing atmospheric CO2 concentrations. Here, we evaluate current hypotheses and knowledge gaps regarding early plant-fungal partnerships in the context of newly discovered fungal mutualists of early and more recently evolved land plants and the rapidly changing views on the roles of plant-fungal symbioses in the evolution and ecology of the terrestrial biosphere.

JOURNAL ARTICLE

Merckx VSFT, Gomes SIF, Wapstra M, Hunt C, Steenbeeke G, Mennes CB, Walsh N, Smissen R, Hsieh T-H, Smets EF, Bidartondo MIet al., 2017, The biogeographical history of the interaction between mycoheterotrophic Thismia (Thismiaceae) plants and mycorrhizal Rhizophagus (Glomeraceae) fungi, JOURNAL OF BIOGEOGRAPHY, Vol: 44, Pages: 1869-1879, ISSN: 0305-0270

JOURNAL ARTICLE

Renny M, Cristina Acosta M, Cofre N, Dominguez LS, Bidartondo MI, Sersic ANet al., 2017, Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae), ANNALS OF BOTANY, Vol: 119, Pages: 1279-1294, ISSN: 0305-7364

JOURNAL ARTICLE

Rimington WR, Pressel S, Field KJ, Strullu-Derrien C, Duckett JG, Bidartondo MIet al., 2017, Reapprasing the origins of mycorrhizas, Molecular Mycorrhizal Symbiosis, Editors: Martin, Publisher: John Wiley & Sons, Pages: 21-32, ISBN: 9781118951415

BOOK CHAPTER

Schiebold JM-I, Bidartondo MI, Karasch P, Gravendeel B, Gebauer Get al., 2017, You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species, ANNALS OF BOTANY, Vol: 119, Pages: 1085-1095, ISSN: 0305-7364

JOURNAL ARTICLE

Schiebold JM-I, Bidartondo MI, Lenhard F, Makiola A, Gebauer Get al., 2017, Exploiting mycorrhizas in broad daylight: Partial mycoheterotrophy is a common nutritional strategy in meadow orchids, Journal of Ecology, Vol: 106, Pages: 168-178, ISSN: 0022-0477

Partial mycoheterotrophy (PMH) is a nutritional mode in which plants utilize organic matter, i.e. carbon, both from photosynthesis and a fungal source. The latter reverses the direction of plant-to-fungus carbon flow as usually assumed in mycorrhizal mutualisms. Based on significant enrichment in the heavy isotope 13C, a growing number of PMH orchid species have been identified. These PMH orchids are mostly associated with fungi simultaneously forming ectomycorrhizas with forest trees. In contrast, the much more common orchids that associate with rhizoctonia fungi, which are decomposers, have stable isotope profiles most often characterized by high 15N enrichment and high nitrogen concentrations but either an insignificant 13C enrichment or depletion relative to autotrophic plants. Using hydrogen stable isotope abundances recent investigations showed PMH in rhizoctonia-associated orchids growing under light-limited conditions. Hydrogen isotope abundances can be used as substitute for carbon isotope abundances in cases where autotrophic and heterotrophic carbon sources are insufficiently distinctive to indicate PMH.To determine whether rhizoctonia-associated orchids growing in habitats with high irradiance feature PMH as a nutritional mode, we sampled 13 orchid species growing in montane meadows, four forest orchid species and 34 autotrophic reference species. We analysed δ2H, δ13C, δ15N and δ18O and determined nitrogen concentrations. Orchid mycorrhizal fungi were identified by DNA sequencing.As expected, we found high enrichments in 2H, 13C, 15N and nitrogen concentrations in the ectomycorrhiza-associated forest orchids, and the rhizoctonia-associated Neottia cordata from a forest site was identified as PMH. Most orchids inhabiting sunny meadows lacked 13C enrichment or were even significantly depleted in 13C relative to autotrophic references. However, we infer PMH for the majority of these meadow orchids due to both significant 2H and 15N

JOURNAL ARTICLE

Suz LM, Kallow S, Reed K, Bidartondo MI, Barsoum Net al., 2017, Pine mycorrhizal communities in pure and mixed pine-oak forests: Abiotic environment trumps neighboring oak host effects, Forest Ecology and Management, Vol: 406, Pages: 370-380, ISSN: 0378-1127

Scots pine (Pinus sylvestris) is frequently planted as a monoculture, but it is also grown in mixed plantations with other native trees such as pedunculate oak (Quercus robur). Both pine and oak form ectomycorrhizas that cover their roots and extend into the soil, facilitating tree water and nutrient uptake in exchange for photosynthetic carbon. Forming the interface between the soil and tree roots, mycorrhizal fungi are key drivers of biogeochemical cycling in terrestrial ecosystems and play an important role in the successful establishment of tree seedlings. They can, however, be susceptible to changes in the soil environment and in their hosts. Both environment and neighboring hosts affect how fungi colonize roots and may affect their host preference. Despite the importance of mycorrhizal fungi in forest ecosystems, little is known about the biodiversity and functional effects of mycorrhizal communities in mixed compared with monoculture plantations. Changes in mycorrhizal richness and composition can result in changes in functional groups with consequences for forest ecosystem stability and functioning. We compared pine mycorrhizas in eight mixed plantations of pine and oak and eight pine monocultures in two forests in England, and we investigated the main factors driving their taxonomic and functional composition. Geographical location and litter pH explained over 50% of the variation in pine mycorrhizal communities. Different environmental factors affected taxonomic and functional composition across stands, indicating functional redundancy. Pine tended to associate with more fungi in the presence of oak, but the abiotic environment exerted a stronger influence than oak presence on pine mycorrhizal diversity.

JOURNAL ARTICLE

Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel Set al., 2016, Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline, ISME JOURNAL, Vol: 10, Pages: 1514-1526, ISSN: 1751-7362

JOURNAL ARTICLE

Kowal J, Pressel S, Duckett JG, Bidartondo MIet al., 2016, Liverworts to the rescue: an investigation of their efficacy as mycorrhizal inoculum for vascular plants, FUNCTIONAL ECOLOGY, Vol: 30, Pages: 1014-1023, ISSN: 0269-8463

JOURNAL ARTICLE

Pressel S, Bidartondo MI, Field KJ, Rimington WR, Duckett JGet al., 2016, Pteridophyte fungal associations: Current knowledge and future perspectives, JOURNAL OF SYSTEMATICS AND EVOLUTION, Vol: 54, Pages: 666-678, ISSN: 1674-4918

JOURNAL ARTICLE

Spake R, van der Linde S, Newton AC, Suz LM, Bidartondo MI, Doncaster CPet al., 2016, Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests, BIOLOGICAL CONSERVATION, Vol: 194, Pages: 71-79, ISSN: 0006-3207

JOURNAL ARTICLE

Desiro A, Faccio A, Kaech A, Bidartondo MI, Bonfante Pet al., 2015, Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria, NEW PHYTOLOGIST, Vol: 205, Pages: 1464-1472, ISSN: 0028-646X

JOURNAL ARTICLE

Field KJ, Leake JR, Tille S, Allinson KE, Rimington WR, Bidartondo MI, Beerling DJ, Cameron DDet al., 2015, From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes, NEW PHYTOLOGIST, Vol: 205, Pages: 1492-1502, ISSN: 0028-646X

JOURNAL ARTICLE

Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MIet al., 2015, Symbiotic options for the conquest of land, TRENDS IN ECOLOGY & EVOLUTION, Vol: 30, Pages: 477-486, ISSN: 0169-5347

JOURNAL ARTICLE

Hynson NA, Bidartondo MI, Read DJ, 2015, Are there geographic mosaics of mycorrhizal specificity and partial mycoheterotrophy? A case study in Moneses uniflora (Ericaceae)., New Phytol, Vol: 208, Pages: 1003-1007

JOURNAL ARTICLE

Liebel HT, Bidartondo MI, Gebauer G, 2015, Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?, ANNALS OF BOTANY, Vol: 115, Pages: 251-261, ISSN: 0305-7364

JOURNAL ARTICLE

Rimington WR, Pressel S, Duckett JG, Bidartondo MIet al., 2015, Fungal associations of basal vascular plants: reopening a closed book?, NEW PHYTOLOGIST, Vol: 205, Pages: 1394-1398, ISSN: 0028-646X

JOURNAL ARTICLE

Suz LM, Barsoum N, Benham S, Cheffings C, Cox F, Hackett L, Jones AG, Mueller GM, Orme D, Seidling W, Van der Linde S, Bidartondo MIet al., 2015, Monitoring ectomycorrhizal fungi at large scales for science, forest management, fungal conservation and environmental policy, ANNALS OF FOREST SCIENCE, Vol: 72, Pages: 877-885, ISSN: 1286-4560

JOURNAL ARTICLE

Yokoya K, Zettler LW, Kendon JP, Bidartondo MI, Stice AL, Skarha S, Corey LL, Knight AC, Sarasan Vet al., 2015, Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar, MYCORRHIZA, Vol: 25, Pages: 611-625, ISSN: 0940-6360

JOURNAL ARTICLE

Bateman RM, Rudall PJ, Bidartondo MI, Cozzolino S, Tranchida-Lombardo V, Carine MA, Moura Met al., 2014, Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago., American Journal of Botany, Vol: 101, Pages: 979-1001, ISSN: 1537-2197

JOURNAL ARTICLE

Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel Set al., 2014, First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2, New Phytologist, ISSN: 1469-8137

The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant-fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant-fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort-Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort-Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2 , we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis.

JOURNAL ARTICLE

Schoch CL, Robbertse B, Robert V, Duong V, Cardinali G, Irinyi L, Meyer W, Nilsson RH, Hughes K, Miller AN, Kirk PM, Abarenkov K, Aime MC, Ariyawansa HA, Bidartondo M, Boekhout T, Buyck B, Cai Q, Chen J, Crespo A, Crous PW, Damm U, De Beer ZW, Dentinger BTM, Divakar PK, Duenas M, Feau N, Fliegerova K, Garcia MA, Ge Z-W, Griffith G, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Gueidan C, Guo L, Hambleton S, Hamelin R, Hansen K, Hofstetter V, Hong S-B, Houbraken J, Hyde KD, Inderbitzin P, Johnston PR, Karunarathna SC, Koljalg U, Kovacs GM, Kraichak E, Krizsan K, Kurtzman CP, Larsson K-H, Leavitt S, Letcher PM, Liimatainen K, Liu J-K, Lodge DJ, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, Manamgoda D, Martin MP, Minnis AM, Moncalvo J-M, Mule G, Nakasone KK, Niskanen T, Olariaga I, Papp T, Petkovits T, Pino-Bodas R, Powell MJ, Raja HA, Redecker D, Sarmiento-Ramirez JM, Seifert KA, Shrestha B, Stenroos S, Stielow B, Suh S-O, Tanaka K, Tedersoo L, Teresa Telleria M, Udayanga D, Untereiner WA, Dieguez Uribeondo J, Subbarao KV, Vagvoelgyi C, Visagie C, Voigt K, Walker DM, Weir BS, Weiss M, Wijayawardene NN, Wingfield MJ, Xu JP, Yang ZL, Zhang N, Zhuang W-Y, Federhen Set al., 2014, Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi, Database, Vol: 2014, ISSN: 0162-4105

DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00392658&limit=30&person=true