Imperial College London

ProfessorMartaBlangiardo

Faculty of MedicineSchool of Public Health

Chair in Biostatistics
 
 
 
//

Contact

 

m.blangiardo Website

 
 
//

Location

 

526Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

68 results found

Cai Y, Hodgson S, Blangiardo M, Gulliver J, Morley D, Fecht D, Vienneau D, de Hoogh K, Key T, Hveem K, Elliott P, Hansell ALet al., 2018, Road traffic noise, air pollution and incident cardiovascular disease: A joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts, ENVIRONMENT INTERNATIONAL, Vol: 114, Pages: 191-201, ISSN: 0160-4120

JOURNAL ARTICLE

Python A, Illian JB, Jones-Todd CM, Blangiardo Met al., 2018, A Bayesian approach to modelling subnational spatial dynamics of worldwide non-state terrorism, 2010-2016, Journal of the Royal Statistical Society. Series A: Statistics in Society, ISSN: 0964-1998

© 2018 The Royal Statistical Society and Blackwell Publishing Ltd. Terrorism persists as a worldwide threat, as exemplified by the on-going lethal attacks perpetrated by Islamic State in Iraq and Syria, Al Qaeda in Yemen and Boko Haram in Nigeria. In response, states deploy various counterterrorism policies, the costs of which could be reduced through efficient preventive measures. Statistical models that can account for complex spatiotemporal dependences have not yet been applied, despite their potential for providing guidance to explain and prevent terrorism. To address this shortcoming, we employ hierarchical models in a Bayesian context, where the spatial random field is represented by a stochastic partial differential equation. Our main findings suggest that lethal terrorist attacks tend to generate more deaths in ethnically polarized areas and in locations within democratic countries. Furthermore, the number of lethal attacks increases close to large cities and in locations with higher levels of population density and human activity.

JOURNAL ARTICLE

Wilunda C, Yoshida S, Blangiardo M, Betran AP, Tanaka S, Kawakami Ket al., 2018, Caesarean delivery and anaemia risk in children in 45 low- and middle-income countries, MATERNAL AND CHILD NUTRITION, Vol: 14, ISSN: 1740-8695

JOURNAL ARTICLE

de Rivera OR, Blangiardo M, López-Quílez A, Martín-Sanz Iet al., 2018, Species distribution modelling through Bayesian hierarchical approach, Theoretical Ecology, Pages: 1-11, ISSN: 1874-1738

© 2018 Springer Nature B.V. Usually in Ecology, the availability and quality of the data is not as good as we would like. For some species, the typical environmental study focuses on presence/absence data, and particularly with small animals as amphibians and reptiles, the number of presences can be rather small. The aim of this study is to develop a spatial model for studying animal data with a low level of presences; we specify a Gaussian Markov Random Field for modelling the spatial component and evaluate the inclusion of environmental covariates. To assess the model suitability, we use Watanabe-Akaike information criteria (WAIC) and the conditional predictive ordinate (CPO). We apply this framework to model each species of amphibian and reptiles present in the Las Tablas de Daimiel National Park (Spain).

JOURNAL ARTICLE

Boulieri A, Liverani S, de Hoogh K, Blangiardo Met al., 2017, A space-time multivariate Bayesian model to analyse road traffic accidents by severity, JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, Vol: 180, Pages: 119-139, ISSN: 0964-1998

JOURNAL ARTICLE

Cai Y, Hansell AL, Blangiardo M, Burton PR, de Hoogh K, Doiron D, Fortier I, Gulliver J, Hveem K, Mbatchou S, Morley D, Stolk RP, Zijlema WL, Elliott P, Hodgson Set al., 2017, Long-termexposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts, EUROPEAN HEART JOURNAL, Vol: 38, Pages: 2290-+, ISSN: 0195-668X

JOURNAL ARTICLE

Cai Y, Hodgson S, Blangiardo M, De Hoogh K, Morley D, Gulliver J, Hveem K, Elliott P, Hansell Aet al., 2017, Ambient Air Pollution, Traffic Noise And Adult-Onset Asthma: The Hunt Study, Norway, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

CONFERENCE PAPER

Cai Y, Zijlema WL, Doiron D, Blangiardo M, Burton PR, Fortier I, Gaye A, Gulliver J, de Hoogh K, Hveem K, Mbatchou S, Morley DW, Stolk RP, Elliott P, Hansell AL, Hodgson Set al., 2017, Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach, EUROPEAN RESPIRATORY JOURNAL, Vol: 49, ISSN: 0903-1936

JOURNAL ARTICLE

Dehbi H-M, Blangiardo M, Gulliver J, Fecht D, de Hoogh K, Al-Kanaani Z, Tillin T, Hardy R, Chaturvedi N, Hansell ALet al., 2017, Air pollution and cardiovascular mortality with over 25 years follow-up: A combined analysis of two British cohorts, ENVIRONMENT INTERNATIONAL, Vol: 99, Pages: 275-281, ISSN: 0160-4120

JOURNAL ARTICLE

Douglas P, Freni-Sterrantino A, Sanchez ML, Ashworth DC, Ghosh RE, Fecht D, Font A, Blangiardo M, Gulliver J, Toledano MB, Elliott P, de Hoogh K, Fuller GW, Hansell ALet al., 2017, Estimating Particulate Exposure from Modern Municipal Waste Incinerators in Great Britain, ENVIRONMENTAL SCIENCE & TECHNOLOGY, Vol: 51, Pages: 7511-7519, ISSN: 0013-936X

JOURNAL ARTICLE

Halonen JI, Dehbi H-M, Hansell AL, Gulliver J, Fecht D, Blangiardo M, Kelly FJ, Chaturvedi N, Kivimaki M, Tonne Cet al., 2017, Associations of night-time road traffic noise with carotid intima-media thickness and blood pressure: The Whitehall II and SABRE study cohorts, ENVIRONMENT INTERNATIONAL, Vol: 98, Pages: 54-61, ISSN: 0160-4120

JOURNAL ARTICLE

Nomura S, Tsubokura M, Ozaki A, Murakami M, Hodgson S, Blangiardo M, Nishikawa Y, Morita T, Oikawa Tet al., 2017, Towards a Long-Term Strategy for Voluntary-Based Internal Radiation Contamination Monitoring: A Population-Level Analysis of Monitoring Prevalence and Factors Associated with Monitoring Participation Behavior in Fukushima, Japan, INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, Vol: 14, ISSN: 1660-4601

JOURNAL ARTICLE

Python A, Illian J, Jones-Todd C, Blangiardo Met al., 2017, Explaining the Lethality of Boko Haram's Terrorist Attacks in Nigeria, 2009-2014: A Hierarchical Bayesian Approach, 3rd Bayesian Young Statisticians Meeting (BAYSM), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 231-239, ISSN: 2194-1009

CONFERENCE PAPER

Scheelbeek PFD, Chowdhury MAH, Haines A, Alam DS, Hogue MA, Butler AP, Khan AE, Mojumder SK, Blangiardo MAG, Elliott P, Vineis Pet al., 2017, Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh, ENVIRONMENTAL HEALTH PERSPECTIVES, Vol: 125, ISSN: 0091-6765

JOURNAL ARTICLE

Smith RB, Fecht D, Gulliver J, Beevers SD, Dajnak D, Blangiardo M, Ghosh RE, Hansell AL, Kelly FJ, Anderson HR, Toledano MBet al., 2017, Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study, BMJ-BRITISH MEDICAL JOURNAL, Vol: 359, ISSN: 1756-1833

JOURNAL ARTICLE

Wang Y, Pirani M, Hansell AL, Richardson S, Blangiardo Met al., 2017, Using ecological propensity score to adjust for missing confounders in small area studies., Biostatistics

Small area ecological studies are commonly used in epidemiology to assess the impact of area level risk factors on health outcomes when data are only available in an aggregated form. However, the resulting estimates are often biased due to unmeasured confounders, which typically are not available from the standard administrative registries used for these studies. Extra information on confounders can be provided through external data sets such as surveys or cohorts, where the data are available at the individual level rather than at the area level; however, such data typically lack the geographical coverage of administrative registries. We develop a framework of analysis which combines ecological and individual level data from different sources to provide an adjusted estimate of area level risk factors which is less biased. Our method (i) summarizes all available individual level confounders into an area level scalar variable, which we call ecological propensity score (EPS), (ii) implements a hierarchical structured approach to impute the values of EPS whenever they are missing, and (iii) includes the estimated and imputed EPS into the ecological regression linking the risk factors to the health outcome. Through a simulation study, we show that integrating individual level data into small area analyses via EPS is a promising method to reduce the bias intrinsic in ecological studies due to unmeasured confounders; we also apply the method to a real case study to evaluate the effect of air pollution on coronary heart disease hospital admissions in Greater London.

JOURNAL ARTICLE

Blangiardo M, Finazzi F, Cameletti M, 2016, Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions, SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, Vol: 18, Pages: 1-12, ISSN: 1877-5845

JOURNAL ARTICLE

Boulieri A, Hansell A, Blangiardo M, 2016, Investigating trends in asthma and COPD through multiple data sources: A small area study, SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, Vol: 19, Pages: 28-36, ISSN: 1877-5845

JOURNAL ARTICLE

Halonen JI, Blangiardo M, Toledano MB, Fecht D, Gulliver J, Anderson HR, Beevers SD, Dajnak D, Kelly FJ, Tonne Cet al., 2016, Long-term exposure to traffic pollution and hospital admissions in London, ENVIRONMENTAL POLLUTION, Vol: 208, Pages: 48-57, ISSN: 0269-7491

JOURNAL ARTICLE

Halonen JI, Blangiardo M, Toledano MB, Fecht D, Gulliver J, Ghosh R, Anderson HR, Beevers SD, Dajnak D, Kelly FJ, Wilkinson P, Tonne Cet al., 2016, Is long-term exposure to traffic pollution associated with mortality? A small-area study in London, ENVIRONMENTAL POLLUTION, Vol: 208, Pages: 25-32, ISSN: 0269-7491

JOURNAL ARTICLE

Hansell A, Ghosh RE, Blangiardo M, Perkins C, Vienneau D, Goffe K, Briggs D, Gulliver Jet al., 2016, Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study, THORAX, Vol: 71, Pages: 330-338, ISSN: 0040-6376

JOURNAL ARTICLE

Liverani S, Lavigne A, Blangiardo M, 2016, Modelling collinear and spatially correlated data, Publisher: ELSEVIER SCI LTD

WORKING PAPER

Liverani S, Lavigne A, Blangiardo MAG, 2016, Modelling collinear and spatially correlated data, Spatial and Spatio-temporal Epidemiology, ISSN: 1877-5853

In this work we present a statistical approach to distinguish and interpret the complexrelationship between several predictors and a response variable at the small area level, in thepresence of i) high correlation between the predictors and ii) spatial correlation for the response.Covariates which are highly correlated create collinearity problems when used in a standardmultiple regression model. Many methods have been proposed in the literature to address thisissue. A very common approach is to create an index which aggregates all the highly correlatedvariables of interest. For example, it is well known that there is a relationship between socialdeprivation measured through the Multiple Deprivation Index (IMD) and air pollution; thisindex is then used as a confounder in assessing the effect of air pollution on health outcomes(e.g. respiratory hospital admissions or mortality). However it would be more informative tolook specifically at each domain of the IMD and at its relationship with air pollution to betterunderstand its role as a confounder in the epidemiological analyses.In this paper we illustrate how the complex relationships between the domains of IMD and airpollution can be deconstructed and analysed using profile regression, a Bayesian non-parametricmodel for clustering responses and covariates simultaneously. Moreover, we include an intrinsicspatial conditional autoregressive (ICAR) term to account for the spatial correlation of theresponse variable.

JOURNAL ARTICLE

Nomura S, Blangiardo M, Tsubokura M, Nishikawa Y, Gilmour S, Kami M, Hodgson Set al., 2016, Post-nuclear disaster evacuation and survival amongst elderly people in Fukushima: A comparative analysis between evacuees and non-evacuees, PREVENTIVE MEDICINE, Vol: 82, Pages: 77-82, ISSN: 0091-7435

JOURNAL ARTICLE

Nomura S, Blangiardo M, Tsubokura M, Ozaki A, Morita T, Hodgson Set al., 2016, Postnuclear disaster evacuation and chronic health in adults in Fukushima, Japan: a long-term retrospective analysis, BMJ OPEN, Vol: 6, ISSN: 2044-6055

JOURNAL ARTICLE

Scheelbeek PFD, Chowdhury MAH, Haines A, Alam DS, Hoque MA, Butler AP, Khan AE, Mojumder SK, Blangiardo MAG, Elliott P, Vineis Pet al., 2016, High concentrations of sodium in drinking water and raised blood pressure in coastal deltas affected by episodic seawater inundations, LANCET GLOBAL HEALTH, Vol: 4, Pages: 18-18, ISSN: 2214-109X

JOURNAL ARTICLE

Blangiardo M, Cameletti M, 2015, Spatial and Spatio-temporal Bayesian Models with R - INLA, ISBN: 9781118950203

© 2015 John Wiley & Sons, Ltd. All rights reserved. Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio�-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations. o

BOOK

Halonen JI, Hansell AL, Gulliver J, Morley D, Blangiardo M, Fecht D, Toledano MB, Beevers SD, Anderson HR, Kelly FJ, Tonne Cet al., 2015, Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London, EUROPEAN HEART JOURNAL, Vol: 36, Pages: 2653-2661, ISSN: 0195-668X

JOURNAL ARTICLE

Pirani M, Best N, Blangiardo M, Liverani S, Atkinson RW, Fuller GWet al., 2015, Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles, ENVIRONMENT INTERNATIONAL, Vol: 79, Pages: 56-64, ISSN: 0160-4120

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00446537&limit=30&person=true