Imperial College London

ProfessorMartinBlunt

Faculty of EngineeringDepartment of Earth Science & Engineering

Chair in Flow in Porous Media
 
 
 
//

Contact

 

+44 (0)20 7594 6500m.blunt Website

 
 
//

Location

 

2.38ARoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Leu:2016:10.1021/acs.energyfuels.6b02256,
author = {Leu, L and Georgiadis, A and Blunt, MJ and Busch, A and Bertier, P and Schweinar, K and Liebi, M and Menzel, A and Ott, H},
doi = {10.1021/acs.energyfuels.6b02256},
journal = {Energy & Fuels},
pages = {10282--10297},
title = {Multiscale description of shale pore systems by scanning SAXS and WAXS microscopy},
url = {http://dx.doi.org/10.1021/acs.energyfuels.6b02256},
volume = {30},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The pore space of shales and mudrocks ranges from molecular dimensions to micrometers in length scale. This leads to great variation in spatial characteristics across many orders of magnitude, which poses a challenge for the determination of a representative microscopic pore network for such systems. Standard characterization techniques generally provide volume-averaged properties while high-resolution imaging techniques do not assess a representative range of pore sizes because of limitations in the spatial resolution over the field of view. Due to this complexity, open questions remain regarding the role of the pore network in retention and transport processes, which in turn control oil and gas production. Volume-averaged but spatially resolved information is obtained for pores of size from 2 to 150 nm by applying scanning small- and wide-angle X-ray scattering (SAXS and WAXS) microscopy. Scattering patterns are collected in a scanning microscopy mode, such that microvoxels are sampled sequentially, over a total of 2 × 2 mm2 raster area on specifically prepared thin sections with a thickness of 10–30 μm. Spatially resolved variations of porosity, pore-size distribution, orientation, as well as mineralogy are derived simultaneously. Aiming at a full characterization of the shale pore network, the measurements and subsequent matrix porosity analysis are integrated in a multiscale imaging workflow involving FIB-SEM, SEM, and μ-CT analysis.
AU - Leu,L
AU - Georgiadis,A
AU - Blunt,MJ
AU - Busch,A
AU - Bertier,P
AU - Schweinar,K
AU - Liebi,M
AU - Menzel,A
AU - Ott,H
DO - 10.1021/acs.energyfuels.6b02256
EP - 10297
PY - 2016///
SN - 1520-5029
SP - 10282
TI - Multiscale description of shale pore systems by scanning SAXS and WAXS microscopy
T2 - Energy & Fuels
UR - http://dx.doi.org/10.1021/acs.energyfuels.6b02256
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000390072900028&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/44087
VL - 30
ER -