Imperial College London

ProfessorMatthewJackson

Faculty of EngineeringDepartment of Earth Science & Engineering

TOTAL Chair in Geological Fluid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 6538m.d.jackson

 
 
//

Location

 

1.34Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

117 results found

Jackson MD, 2015, Tools and Techniques: Self-Potential Methods, Treatise on Geophysics: Second Edition, Pages: 261-293, ISBN: 9780444538024

© 2015 Elsevier B.V. All rights reserved. The self-potential (or spontaneous potential) (SP) method comprises the passive measurement of electric potential at the ground surface and in boreholes. SP methods have a number of advantages over other geophysical techniques: They are often cheaper and quicker to implement, requiring only a pair (or more) of suitable electrodes and a high-impedance voltmeter, and data can be obtained over large regions with dense sampling in both space and time. Moreover, SP anomalies are often directly related to the process of interest, such as changes in groundwater flow, chemistry, and/or temperature. The disadvantages largely lie in interpreting the data, which can be more challenging than other geophysical techniques. Similar to gravity and magnetic methods, SP measurements are purely passive, so there is often no way of adjusting source parameters to help identify signals of interest. Moreover, SP signals arise from a variety of sources, and distinguishing these can be challenging. Traditional SP surveys for mineral exploration, and borehole SP logs, have been interpreted qualitatively or semiquantitatively; however, a new generation of inversion techniques for SP measurements are now becoming available, driven by improved understanding of the underlying physical processes and increased computing power. Furthermore, the range and number of applications of the SP methods have rapidly increased in recent years.

Book chapter

Leinov E, Jackson MD, 2014, Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring, JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, Vol: 119, Pages: 6855-6876, ISSN: 2169-9313

Journal article

Solano JMS, Jackson MD, Sparks RSJ, Blundy Jet al., 2014, Evolution of major and trace element composition during melt migration through crystalline mush: Implications for chemical differentiation in the crust, American Journal of Science, Vol: 314, Pages: 895-939, ISSN: 0002-9599

We present the first quantitative model of heat, mass and both majorand trace element transport in a mush undergoing compaction that accounts forcomponent transport and chemical reaction during melt migration and which isapplicable to crustal systems. The model describes the phase behavior of binarysystems (both eutectic and solid solution), with melt and solid compositions determinedfrom phase diagrams using the local temperature and bulk composition. Traceelement concentration is also determined. The results demonstrate that componenttransport and chemical reaction generate compositional variation in both major andtrace elements that is not captured by existing geochemical models. In particular, wefind that, even for the simplest case of a homogenous, insulated column that isinstantaneously melted then allowed to compact, component transport and reactionleads to spatial variations in major element composition that, in this case, producesmelt that is more enriched in incompatible elements than predicted by batch melting.In deep crustal hot zones (DCHZ), created by the repeated intrusion of hot, mantlederivedmagmas, buoyant melt migrating upwards accumulates in high porosity layers,but has a composition corresponding to only a small fraction of batch melting, becauseit has locally equilibrated with mush at low temperature; moreover, melt migration andchemical reaction in a layered protolith may lead to the rapid formation of highporosity melt layers at the interface between different rock compositions. In both ofthese cases, the melt in the high porosity layer(s) is less enriched in incompatible traceelements than predicted if it is assumed that melt with the same major elementcomposition was produced by batch melting. This distinctive decoupling of major andtrace element fractionation may be characteristic of magmas that originate in DCHZ.Application of the model to a number of crustal systems, including the Ivrea-Verbanozone, the Rum layered intrusion, and the Hol

Journal article

Deveugle PEK, Jackson MD, Hampson GJ, Stewart J, Clough MD, Ehighebolo T, Farrell ME, Calvert CS, Miller JKet al., 2014, A comparative study of reservoir modeling techniques and their impact on predicted performance of fluvial-dominated deltaic reservoirs, AAPG BULLETIN, Vol: 98, Pages: 729-763, ISSN: 0149-1423

Journal article

Fitch PJR, Jackson MD, Hampson GJ, John CMet al., 2014, Interaction of stratigraphic and sedimentological heterogeneities with flow in carbonate ramp reservoirs: impact of fluid properties and production strategy, PETROLEUM GEOSCIENCE, Vol: 20, Pages: 7-26, ISSN: 1354-0793

Journal article

Dilib FA, Jackson MD, 2013, Closed-Loop Feedback Control for Production Optimization of Intelligent Wells Under Uncertainty, SPE PRODUCTION & OPERATIONS, Vol: 28, Pages: 345-357, ISSN: 1930-1855

Journal article

Legler B, Johnson HD, Hampson GJ, Massart BYG, Jackson CAL, Jackson MD, El-Barkooky A, Ravnas Ret al., 2013, Facies model of a fine-grained, tide-dominated delta: lower Dir Abu Lifa Member (Eocene), Western Desert, Egypt, Sedimentology, Vol: 60, Pages: 1313-1356

Existing facies models of tide-dominated deltas largely omit fine-grained, mud-rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well-preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non-channelised tidal bars and tidal channels. Non-channelised tidal bars comprise coarsening-upward sand bodies, including large, downcurrent-dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single-storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward-facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically-accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along-strike variability defines a similar large-scale architecture in both parasequence sets: a deeply scoured channel belt characterised by widespread inclined heterolithic strata is eroded from the parasequence-set top, and flanked by stacked, non-channelised tidal bars and smaller channelised bodies. The tide-dominated delta is characterised by: (i) the regressive stratigraphic context; (ii) net-progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and ti

Journal article

Agar S, Geiger S, Leonide P, Lamarche J, Bertotti G, Gosselin O, Hampson GJ, Jackson MD, Jones G, Kenter J, Matthai SK, Neilson J, Pyrak-Nolte L, Whittaker Fet al., 2013, Summary of the AAPG–SPE–SEG Hedberg Research Conference on “Fundamental Controls on Flow in Carbonates”, AAPG Bulletin, Vol: 97, Pages: 533-552

A joint AAPG–Society of Petroleum Engineers–Society of Exploration Geophysicists Hedberg Research Conference was held in Saint-Cyr sur Mer, France, on July 8 to 13, 2012, to review current research and explore future research directions related to improved production from carbonate reservoirs. Eighty-seven scientists from academia and industry (split roughly equally) attended for five days. A primary objective for the conference was to explore novel connections among different disciplines (primarily within geoscience and reservoir engineering) as a way to define new research opportunities. Research areas represented included carbonate sedimentology and stratigraphy, structural geology, geomechanics, hydrology, reactive transport modeling, seismic imaging (including four-dimensional seismic, tomography, and seismic forward modeling), geologic modeling and forward modeling of geologic processes, petrophysics, statistical methods, numerical methods for simulation, reservoir engineering, pore-scale processes, in-situ flow experiments (e.g., x-ray computed tomography), visualization, and methods for data interaction.

Journal article

Solano JMS, Jackson MD, Sparks RSJ, Blundy JD, Annen Cet al., 2012, Melt Segregation in Deep Crustal Hot Zones: a Mechanism for Chemical Differentiation, Crustal Assimilation and the Formation of Evolved Magmas, Journal of Petrology, Vol: 53, Pages: 1999-2026, ISSN: 1460-2415

Mantle-derived basaltic sills emplaced in the lower crust provide amechanism for the generation of evolved magmas in deep crustal hotzones (DCHZ).This study uses numerical modelling to characterizethe time required for evolved magma formation, the depth and temperatureat which magma formation occurs, and the composition ofthe magma.The lower crust is assumed to comprise amphibolite. Inan extension of previous DCHZ models, the new model couples heattransfer during the repetitive emplacement of sills with mass transfervia buoyancy-driven melt segregation along grain boundaries.The resultsshed light on the dynamics of DCHZ development and evolution.TheDCHZ comprises a mush of crystals plus interstitial melt,except when a new influx of basaltic magma yields a short-lived(20^200 years) reservoir of melt plus suspended crystals (magma).Melt segregation and accumulation within the mush yields two contrastingmodes of evolved magma formation, which operate over timescalesof c. 10 kyr-1 Myr, depending upon emplacement rate andstyle. In one, favoured by emplacement via over-accretion, or emplacementat high rates, evolved magma forms in the crust overlying theintruded basalt sills, and is composed of crustal partial melt, and residualmelt that has migrated upwards out of the crystallizingbasalt. In the other, favoured by emplacement via under- orintra-accretion, or by emplacement at lower rates, evolved magmaforms in the intruded basalt, and the resulting magma is composedprimarily of residual melt. In all cases, the upward migration ofbuoyant melt yields cooler and more evolved magmas, which arebroadly granitic in composition. Chemical differentiation is thereforedriven by melt migration, because the melt migrates through, andchemically equilibrates with, partially molten rock at progressivelylower temperatures. Crustal assimilation occurs during partial melting,and mixing of crustal and residual melt occurs when residualmelt migrates into the partially molten crust, yielding

Journal article

Elsheikh AH, Jackson MD, Laforce TC, 2012, Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties, MATHEMATICAL GEOSCIENCES, Vol: 44, Pages: 515-543, ISSN: 1874-8961

Journal article

Glover PWJ, Walker E, Jackson MD, 2012, Streaming-potential coefficient of reservoir rock: A theoretical model, Geophysics, Vol: 77, Pages: D17-D43, ISSN: 1942-2156

The streaming potential is that electrical potential whichdevelops when an ionic fluid flows through the pores of a rock.It is an old concept that is recently being applied in many fieldsfrom monitoring water fronts in oil reservoirs to understandingthe mechanisms behind synthetic earthquakes. We have carriedout fundamental theoretical modeling of the streaming-potentialcoefficient as a function of pore fluid salinity, pH, and temperatureby modifying the HS equation for use with porous rocksand using input parameters from established fundamental theory(the Debye screening length, the Stern-plane potential, the zetapotential, and the surface conductance). The model also requiresthe density, electrical conductivity, relative electric permittivityand dynamic viscosity of the bulk fluid, for which empiricalmodels are used so that the temperature of the model may bevaried. These parameters are then combined with parametersthat describe the rock microstructure. The resulting theoreticalvalues have been compared with a compilation of data for siliceousmaterials comprising 290 streaming-potential coefficientmeasurements and 269 zeta-potential measurements obtainedexperimentally for 17 matrix-fluid combinations (e.g., sandstonesaturated with KCl), using data from 29 publications.The theoretical model was found to ably describe the main featuresof the data, whether taken together or on a sample by samplebasis. The low-salinity regime was found to be controlled bysurface conduction and rock microstructure, and was sensitiveto changes in porosity, cementation exponent, formation factor,grain size, pore size and pore throat size as well as specific surfaceconductivity. The high-salinity regime was found to be subjectto a zeta-potential offset that allows the streaming-potentialcoefficient to remain significant even as the saturation limit isapproached

Journal article

Jackson MD, Vinogradov J, 2012, Impact of wettability on laboratory measurements of streaming potential in carbonates, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, Vol: 393, Pages: 86-95, ISSN: 0927-7757

Journal article

Saunders JH, Jackson MD, Pain CC, Vinogradov Jet al., 2012, Streaming potentials in hydrocarbon reservoir conditions, Geophysics, Vol: 77, Pages: E77-E90

Journal article

Jackson MD, Gulamali MY, Leinov E, Saunders JH, Vinogradov Jet al., 2012, Spontaneous Potentials in Hydrocarbon Reservoirs during Waterflooding: Application to Waterfront Monitoring, SPE Journal

Journal article

Jackson MD, Butler AP, Vinogradov J, 2012, Measurements of Spontaneous Potential in Chalk with Application to Aquifer Characterisation in the Southern UK, Quarterly Journal of Engineering Geology and Hydrogeology

Journal article

Jackson MD, Leinov E, 2012, On the Validity of the “Thin” and “Thick”Double-Layer Assumptions When CalculatingStreaming Currents in Porous Media, International Journal of Geophysics, Vol: 2012, ISSN: 1687-8868

We find that the thin double layer assumption, in which the thickness of the electrical diffuse layer is assumed small comparedto the radius of curvature of a pore or throat, is valid in a capillary tubes model so long as the capillary radius is >200 times thedouble layer thickness, while the thick double layer assumption, in which the diffuse layer is assumed to extend across the entirepore or throat, is valid so long as the capillary radius is >6 times smaller than the double layer thickness. At low surface chargedensity (<10 mC · m−2) or high electrolyte concentration (>0.5 M) the validity criteria are less stringent. Our results suggest thatthe thin double layer assumption is valid in sandstones at low specific surface charge (<10 mC · m−2), but may not be valid insandstones of moderate- to small pore-throat size at higher surface charge if the brine concentration is low (<0.001 M). The thickdouble layer assumption is likely to be valid in mudstones at low brine concentration (<0.1 M) and surface charge (<10 mC·m−2),but at higher surface charge, it is likely to be valid only at low brine concentration (<0.003 M). Consequently, neither assumptionmay be valid in mudstones saturated with natural brines.

Journal article

Jackson MD, Vinogradov J, Saunders JH, Jaafar MZet al., 2011, Laboratory Measurements and Numerical Modeling of Streaming Potential for Downhole Monitoring in Intelligent Wells, SPE JOURNAL, Vol: 16, Pages: 625-636, ISSN: 1086-055X

Journal article

Gulamali MY, Leinov E, Jackson MD, 2011, Self-potential anomalies induced by water injection into hydrocarbon reservoirs, GEOPHYSICS, Vol: 76, Pages: F283-F292, ISSN: 0016-8033

Journal article

Gulamali MY, Leinov E, Jackson MD, 2011, Self-potential anomalies induced by water injection into hydrocarbon reservoirs, Geophysics, Vol: 76, Pages: F283-F292, ISSN: 1942-2156

The injection of cold water into a hydrocarbon reservoir containingrelatively warmer, more saline formation brine may generateself-potential anomalies as a result of electrokinetic,thermoelectric, and=or electrochemical effects. We havenumerically assessed the relative contributions of these effectsto the overall self-potential signal generated during oil productionin a simple hydrocarbon reservoir model. Our aim was todetermine if measurements of self-potential at a production wellcan be used to detect the movement of water toward the well.The coupling coefficients for the electrochemical and thermoelectricpotentials are uncertain, so we considered four differentmodels for them. We also investigated the effect of altering thesalinities of the formation and injected brines. We found thatthe electrokinetic potential peaked at the location of the saturationfront (reaching values of 0.2 mV even for the most salinebrine considered). Moreover, the value at the production wellincreased as the front approached the well, exceeding the noiselevel ( 0.1 mV). Thermoelectric effects gave rise to largerpotentials in the reservoir (10 mV), but values at the wellwere negligible ð Þ .0:1 mV until after water breakthroughbecause of the lag in the temperature front relative to the saturationfront. Electrochemical potentials were smaller in magnitudethan thermoelectric potentials in the reservoir but were measurableð Þ > 0:1 mV at the well because the salinity front wasclosely associated with the saturation front. When the formationbrine was less saline (1 mol=liter), electrokinetic effects dominated;at higher salinities (5 mol=liter), electrochemicaleffects were significant. We concluded that the measurement ofself-potential signals in a production well may be used to monitorthe movement of water in hydrocarbon reservoirs duringproduction, but further research is required to understand thethermoelectric and electrochemical coupling coefficients in partiallysatu

Journal article

Choi K, Jackson MD, Hampson GJ, Jones ADW, Reynolds ADet al., 2011, Predicting the impact of sedimentological heterogeneity on gas-oil and water-oil displacements: fluvial-deltaic Pereriv Suite reservoir, ACG Oilfield, South Caspian Basin, Petroleum Geoscience, Vol: 17, Pages: 143-163

Journal article

Deveugle PEK, Jackson MD, Hampson GJ, Farrell ME, Sprague AS, Stewart J, Calvert CSet al., 2011, Characterization of stratigraphic architecture and its impact on fluid flow in a fluvial-dominated deltaic reservoir analog: Ferron Sandstone Member, Utah, AAPG Bulletin, Vol: 93, Pages: 693-727, ISSN: 0149-1423

Fluviodeltaic stratigraphic architecture and its impact on fluid flow have been characterized using a high-resolution, three-dimensional, reservoir-scale model of an outcrop analog from the Upper Cretaceous Ferron Sandstone Member of central Utah. The model contains two parasequence sets (delta complexes), each with five or six parasequences, separated by an interval of coastal plain strata. Each parasequence contains one or two laterally offset teardrop-shaped delta lobes that are 6 to 12 km (4–7 mi) long, 3 to 9 km (2–6 mi) wide, 5 to 29 m (16–95 ft) thick, and have aspect ratios (width/length) of 0.4 to 0.8. Delta lobes have a wide range of azimuthal orientations (120°) around an overall east-northeastward progradation direction. In plan view, delta lobes in successive parasequences exhibit large (as much as 91°) clockwise and counterclockwise rotations in progradation direction, which are attributed to autogenic lobe switching. In cross-sectional view, parasequence stacking is strongly progradational, but a small component of aggradation or downstepping between parasequences reflects relative sea level fluctuations. We use flow simulations to characterize the impact of this heterogeneity on production in terms of the sweep efficiency, which is controlled by (1) the continuity, orientation, and permeability of channel-fill sand bodies; (2) the vertical permeability of distal delta-front heteroliths; (3) the direction of sweep relative to the orientation of channel-fill and delta-lobe sand bodies; and (4) well spacing. Distributary channel-fill sand bodies terminate at the apex of genetically related delta lobes and provide limited sand body connectivity. In contrast, fluvial channel-fill sand bodies cut into, and connect, multiple delta-lobe sand bodies. Low, but non-zero, vertical permeability within distal delta-front heteroliths also provides connectivity between successive delta-lobe sand bodies.

Journal article

Taggart S, Hampson GJ, Jackson MD, 2010, High-resolution stratigraphic architecture and lithological heterogeneity within marginal aeolian reservoir analogues, SEDIMENTOLOGY, Vol: 57, Pages: 1246-1279, ISSN: 0037-0746

Journal article

Jackson MD, 2010, Multiphase electrokinetic coupling: Insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model, JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, Vol: 115, ISSN: 0148-0227

Journal article

Glover PWJ, Jackson MD, 2010, Borehole electrokinetics, The Leading Edge, Vol: 29, Pages: 724-728

Journal article

Leinov E, Vinogradov J, Jackson MD, 2010, Salinity Dependence of the Thermoelectric Coupling Coefficient in Brine-Saturated Sandstones, Geophysical Research Letters

Journal article

Vinogradov J, Jaafar MZ, Jackson MD, 2010, Measurement of Streaming Potential Coupling Coefficient in Sandstones Saturated with Natural and Artificial Brines at High Salinity, Journal of Geophysical Research

Journal article

Bland PA, Jackson MD, Coker RF, Cohen BA, Webber JBW, Lee MR, Duffy CM, Chater RJ, Ardakani MG, McPhail DS, McComb DW, Benedix GKet al., 2009, Why aqueous alteration in asteroids was isochemical: High porosity not equal high permeability, EARTH AND PLANETARY SCIENCE LETTERS, Vol: 287, Pages: 559-568, ISSN: 0012-821X

Journal article

Getsinger A, Rushmer T, Jackson MD, Baker Det al., 2009, Generating High Mg-numbers and Chemical Diversity in Tonalite-Trondhjemite-Granodiorite (TTG) Magmas during Melting and Melt Segregation in the Continental Crust, JOURNAL OF PETROLOGY, Vol: 50, Pages: 1935-1954, ISSN: 0022-3530

Journal article

Jackson MD, Hampson GJ, Sech RP, 2009, Three-dimensional modeling of a shoreface-shelf parasequence reservoir analog: Part 2. Geologic controls on fluid flow and hydrocarbon recovery, AAPG BULLETIN, Vol: 93, Pages: 1183-1208, ISSN: 0149-1423

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00167122&limit=30&person=true&page=3&respub-action=search.html