Imperial College London

DrMarinaGaland

Faculty of Natural SciencesDepartment of Physics

Reader in Planetary Science
 
 
 
//

Contact

 

m.galand Website

 
 
//

Location

 

Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

124 results found

Eriksson AI, Engelhardt IAD, Andre M, Bostrom R, Edberg NJT, Johansson FL, Odelstad E, Vigren E, Wahlund J-E, Henri P, Lebreton J-P, Miloch WJ, Paulsson JJP, Wedlund CS, Yang L, Karlsson T, Jarvinen R, Broiles T, Mandt K, Carr CM, Galand M, Nilsson H, Norberg Cet al., 2017, Cold and warm electrons at comet 67P/Churyumov-Gerasimenko, Astronomy and Astrophysics, Vol: 605, ISSN: 0004-6361

Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce.Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma.Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas.Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5–10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order − 10 V.Conclusions. The warm (5–10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming fil

Journal article

Heritier KL, Altwegg K, Balsiger H, Berthelier J-J, Beth A, Bieler A, Biver N, Calmonte U, Combi MR, De Keyser J, Eriksson AI, Fiethe B, Fougere N, Fuselier SA, Galand M, Gasc S, Gombosi TI, Hansen KC, Hassig M, Kopp E, Odelstad E, Rubin M, Tzou C-Y, Vigren E, Vuitton Vet al., 2017, Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation, Monthly Notices of the Royal Astronomical Society, Vol: 469, Pages: S427-S442, ISSN: 0035-8711

We present the ion composition in the coma of comet 67P with newly detected ion species over the 28–37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place at low cometocentric distances. Minor neutrals can efficiently capture protons from the ion population, making the protonated version of these neutrals a major ion species. So far, onlyNH+4has been reported at comet 67P. However, there are additional neutral species with proton affinities higher than that of water (besides NH3) that have been detected in the coma of comet 67P: CH3OH, HCN, H2CO and H2S. Their protonated versions have all been detected. Statistics showing the number of detections with respect to the number of scans are presented. The effect of the negative spacecraft potential probed by the Rosetta Plasma Consortium/LAngmuir Probe on ion detection is assessed. An ionospheric model has been developed to assess the different ion density profiles and compare them to the ROSINA/DFMS measurements. It is also used to interpret the ROSINA/DFMS observations when different ion species have similar masses, and their respective densities are not high enough to disentangle them using the ROSINA/DFMS high-resolution mode. The different ion species that have been reported in the coma of 67P are summarized and compared with the ions detected at comet 1P/Halley during the Giotto mission.

Journal article

Nilsson H, Wieser GS, Behar E, Gunell H, Wieser M, Galand M, Wedlund CS, Alho M, Goetz C, Yamauchi M, Henri P, Odelstad E, Vigren Eet al., 2017, Erratum: Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA, Monthly Notices of the Royal Astronomical Society, Vol: 469, Pages: S804-S804, ISSN: 0035-8711

Journal article

Henri P, Vallières X, Hajra R, Goetz C, Richter I, Glassmeier K-H, Galand M, Rubin M, Eriksson AI, Nemeth Z, Vigren E, Beth A, Burch JL, Carr C, Nilsson H, Tsurutani B, Wattieaux Get al., 2017, Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG, Monthly Notices of the Royal Astronomical Society, Vol: 469, Pages: S372-S379, ISSN: 0035-8711

The ESA’s comet chaser Rosetta has monitored the evolution of the ionized atmosphere of comet 67P/Churyumov–Gerasimenko (67P/CG) and its interaction with the solar wind, during more than 2 yr. Around perihelion, while the cometary outgassing rate was highest, Rosetta crossed hundreds of unmagnetized regions, but did not seem to have crossed a large-scale diamagnetic cavity as anticipated. Using in situ Rosetta observations, we characterize the structure of the unmagnetized plasma found around comet 67P/CG. Plasma density measurements from RPC-MIP are analysed in the unmagnetized regions identified with RPC-MAG. The plasma observations are discussed in the context of the cometary escaping neutral atmosphere, observed by ROSINA/COPS. The plasma density in the different diamagnetic regions crossed by Rosetta ranges from ∼100 to ∼1500 cm−3. They exhibit a remarkably systematic behaviour that essentially depends on the comet activity and the cometary ionosphere expansion. An effective total ionization frequency is obtained from in situ observations during the high outgassing activity phase of comet 67P/CG. Although several diamagnetic regions have been crossed over a large range of distances to the comet nucleus (from 50 to 400 km) and to the Sun (1.25–2.4 au), in situ observations give strong evidence for a single diamagnetic region, located close to the electron exobase. Moreover, the observations are consistent with an unstable contact surface that can locally extend up to about 10 times the electron exobase.

Journal article

Nilsson H, Wieser GS, Behar E, Gunell H, Wieser M, Galand M, Simon Wedlund C, Alho M, Goetz C, Yamauchi M, Henri P, Odelstad E, Vigren Eet al., 2017, Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA, Monthly Notices of the Royal Astronomical Society, Vol: 469, Pages: S252-S261, ISSN: 0035-8711

Rosetta has followed comet 67P from low activity at more than 3.6 au heliocentric distance to high activity at perihelion (1.24 au) and then out again. We provide a general overview of the evolution of the dynamic ion environment using data from the RPC-ICA ion spectrometer. We discuss where Rosetta was located within the evolving comet magnetosphere. For the initial observations, the solar wind permeated all of the coma. In 2015 mid-April, the solar wind started to disappear from the observation region, to re-appear again in 2015 December. Low-energy cometary ions were seen at first when Rosetta was about 100 km from the nucleus at 3.6 au, and soon after consistently throughout the mission except during the excursions to farther distances from the comet. The observed flux of low-energy ions was relatively constant due to Rosetta's orbit changing with comet activity. Accelerated cometary ions, moving mainly in the antisunward direction gradually became more common as comet activity increased. These accelerated cometary ions kept being observed also after the solar wind disappeared from the location of Rosetta, with somewhat higher fluxes further away from the nucleus. Around perihelion, when Rosetta was relatively deep within the comet magnetosphere, the fluxes of accelerated cometary ions decreased, as did their maximum energy. The disappearance of more energetic cometary ions at close distance during high activity is suggested to be due to a flow pattern where these ions flow around the obstacle of the denser coma or due to charge exchange losses.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00422628&limit=5&person=true&page=5&respub-action=search.html