Imperial College London


Faculty of Natural SciencesDepartment of Physics

Professor in Planetary Science



m.galand Website




Huxley BuildingSouth Kensington Campus





Publication Type

131 results found

Vigren E, Altwegg K, Edberg NJT, Eriksson AI, Galand M, Henri P, Johansson F, Odelstad E, Tzou C-Y, Vallieres Xet al., 2017, Erratum: “Model–observation comparisons of electron number densities in the coma of 67P/Churyumov-Gerasimenko during 2015 January” (2016, AJ, 152, 59), Astronomical Journal, Vol: 153, Pages: 50-50, ISSN: 0004-6256

Journal article

Galand M, Héritier KL, Odelstad E, Henri P, Broiles TW, Allen AJ, Altwegg K, Beth A, Burch JL, Carr CM, Cupido E, Eriksson AI, Glassmeier K-H, Johansson FL, Lebreton J-P, Mandt KE, Nilsson H, Richter I, Rubin M, Sagnières LBM, Schwartz SJ, Sémon T, Tzou C-Y, Vallières X, Vigren E, Wurz Pet al., 2016, Ionospheric plasma of comet 67P probed by Rosetta at 3 AU from the Sun, Monthly Notices of the Royal Astronomical Society, Vol: 462, Pages: S331-S351, ISSN: 1365-2966

We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov–Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (<20 km) and large heliocentric distances (>3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density – with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7–10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population

Journal article

Fuselier SA, Altwegg K, Balsiger H, Berthelier JJ, Beth A, Bieler A, Briois C, Broiles TW, Burch JL, Calmonte U, Cessateur G, Combi M, De Keyser J, Fiethe B, Galand M, Gasc S, Gombosi TI, Gunell H, Hansen KC, Hässig M, Heritier KL, Korth A, Le Roy L, Luspay-Kuti A, Mall U, Mandt KE, Petrinec SM, Rème H, Rinaldi M, Rubin M, Sémon T, Trattner KJ, Tzou C-Y, Vigren E, Waite JH, Wurz Pet al., 2016, Ion chemistry in the coma of comet 67P near perihelion, Monthly Notices of the Royal Astronomical Society, Vol: 462, Pages: S67-S77, ISSN: 1365-2966

The coma and the comet–solar wind interaction of comet 67P/Churyumov–Gerasimenko changed dramatically from the initial Rosetta spacecraft encounter in 2014 August through perihelion in 2015 August. Just before equinox (at 1.6 au from the Sun), the solar wind signal disappeared and two regions of different cometary ion characteristics were observed. These ‘outer’ and ‘inner’ regions have cometary ion characteristics similar to outside and inside the ion pileup region observed during the Giotto approach to comet 1P/Halley. Rosetta/Double-Focusing Mass Spectrometer ion mass spectrometer observations are used here to investigate the H3O+/H2O+ ratio in the outer and inner regions at 67P/ Churyumov–Gerasimenko. The H3O+/H2O+ ratio and the H3O+ signal are observed to increase in the transition from the outer to the inner region and the H3O+ signal appears to be weakly correlated with cometary ion energy. These ion composition changes are similar to the ones observed during the 1P/Halley flyby. Modelling is used to determine the importance of neutral composition and transport of neutrals and ions away from the nucleus. This modelling demonstrates that changes in the H3O+/H2O+ ratio appear to be driven largely by transport properties and only weakly by neutral composition in the coma.

Journal article

Grün E, Agarwal J, Altobelli N, Altwegg K, Bentley MS, Biver N, Della Corte V, Edberg N, Feldman PD, Galand M, Geiger B, Götz C, Grieger B, Güttler C, Henri P, Hofstadter M, Horanyi M, Jehin E, Krüger H, Lee S, Mannel T, Morales E, Mousis O, Müller M, Opitom C, Rotundi A, Schmied R, Schmidt F, Sierks H, Snodgrass C, Soja RH, Sommer M, Srama R, Tzou C-Y, Vincent J-B, Yanamandra-Fisher P, A'Hearn MF, Erikson AI, Barbieri C, Barucci MA, Bertaux J-L, Bertini I, Burch J, Colangeli L, Cremonese G, Da Deppo V, Davidsson B, Debei S, De Cecco M, Deller J, Feaga LM, Ferrari M, Fornasier S, Fulle M, Gicquel A, Gillon M, Green SF, Groussin O, Gutiérrez PJ, Hofmann M, Hviid SF, Ip W-H, Ivanovski S, Jorda L, Keller HU, Knight MM, Knollenberg J, Koschny D, Kramm J-R, Kührt E, Küppers M, Lamy PL, Lara LM, Lazzarin M, Lòpez-Moreno JJ, Manfroid J, Epifani EM, Marzari F, Naletto G, Oklay N, Palumbo P, Parker JW, Rickman H, Rodrigo R, Rodrìguez J, Schindhelm E, Shi X, Sordini R, Steffl AJ, Stern SA, Thomas N, Tubiana C, Weaver HA, Weissman P, Zakharov VV, Taylor MGGTet al., 2016, The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study, Monthly Notices of the Royal Astronomical Society, Vol: 462, Pages: S220-S234, ISSN: 1365-2966

On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ∼−16 V to −20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (∼25 m s−1) while 100 μm radius particles were detected by the GIADA dust instrument ∼1 h later at a speed of 6 m s−1. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.

Journal article

Vigren E, Altwegg K, Edberg NJT, Eriksson AI, Galand M, Henri P, Johansson F, Odelstad E, Tzou C-Y, Valliéres Xet al., 2016, MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY, Astronomical Journal, Vol: 152, ISSN: 1538-3881

During 2015 January 9–11, at a heliocentric distance of ~2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ~28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00422628&limit=5&person=true&page=8&respub-action=search.html