Imperial College London

Dr Mazdak Ghajari

Faculty of EngineeringDyson School of Design Engineering

Reader in Brain Biomechanics
 
 
 
//

Contact

 

+44 (0)20 7594 9236m.ghajari Website

 
 
//

Location

 

Dyson BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

73 results found

Yu X, Azor A, Sharp DJ, Mazdak Get al., 2020, Mechanisms of tensile failure of cerebrospinal fluid in blast traumatic brain injury, Extreme Mechanics Letters, Vol: 38, Pages: 1-9, ISSN: 2352-4316

Mechanisms of blast-induced Traumatic Brain Injury (BTBI), particularly those linked to the primary pressure wave, are still not fully understood. One possible BTBI mechanism is cavitation in the cerebrospinal fluid (CSF) caused by CSF tensile failure, which is likely to increase strain and strain rate in the brain tissue near the CSF. Blast loading of the head can generate rarefaction (expansion) waves and rapid head motion, which both can produce tensile forces in the CSF. However, it is not clear which of these mechanisms is more likely to cause CSF tensile failure. In this study, we used a high-fidelity 3-dimensional computational model of the human head to test whether the CSF tensile failure increases brain deformation near the brain/CSF boundary and to determine the key failure mechanisms. We exposed the head model to a frontal blast wave and predicted strain and strain rate distribution in the cortex. We found that CSF tensile failure significantly increased strain and strain rate in the cortex. We then studied whether the rapid head motion or the rarefaction wave causes strain and strain rate concentration in cortex. We isolated these two effects by conducting simulations with pure head motion loading (i.e. prescribing the skull velocity but eliminating the pressure wave) and pure blast wave loading (i.e. eliminating head motion by fixing the skull base). Our results showed that the strain increase in the cortex was mainly caused by head motion. In contrast, strain rate increase was caused by both rapid head motion and rarefaction waves, but head motion had a stronger effect on elevating strain rate. Our results show that rapid motion of the head produced by blast wave is the key mechanism for CSF tensile failure and subsequent concentration of strain and strain rate in cortex. This finding suggests that mitigation of rapid head motion caused by blast loading needs to be addressed in the design of protective equipment in order to prevent the tensile failure

Journal article

Abayazid F, Ghajari M, 2020, Material characterisation of additively manufactured elastomers at different strain rates and build orientations, Additive Manufacturing, Vol: 33, ISSN: 2214-8604

Material jetting, particularly PolyJet technology, is an additive manufacturing (AM) process which has introduced novel flexible elastomers used in bio-inspired soft robots, compliant structures and dampers. Finite Element Analysis (FEA) is a key tool for the development of such applications, which requires comprehensive material characterisation utilising advanced material models. However, in contrast to conventional rubbers, PolyJet elastomers have been less explored leading to a few material models with various limitations in fidelity. Therefore, one aim of this study was to characterise the mechanical response of the latest PolyJet elastomers, Agilus30 (A30) and Tango+ (T+), under large strain tension-compression and time-dependent high-frequency/relaxation loadings. Another aim was to calibrate a visco-hyperelastic material model to accurately predict these responses. Tensile, compressive, cyclic, dynamic mechanical analysis (DMA) and stress relaxation tests were carried out on pristine A30 and T+ samples. Quasi-static tension-compression tests were used to calibrate a 3-term Ogden hyperelastic model. Stress relaxation and DMA results were combined to determine the constants of a 5-term Prony series across a large window of relaxation time (10 μs–100 s). A numerical time-stepping scheme was employed to predict the visco-hyperelastic response of the 3D-printed elastomers at large strains and different strain rates. In addition, the anisotropy in the elastomers, which stemmed from build orientation, was explored. Highly nonlinear stress-strain relationships were observed in both elastomers, with a strong dependency on strain rate. Relaxation tests revealed that A30 and T+ elastomers relax to 50 % and 70 % of their peak stress values respectively in less than 20 s. The effect of orientation on the loading response was most pronounced with prints along the Z-direction, particularly at large strains and lower strain rates. Moreover, the visco-hyperelastic m

Journal article

Soleiman Fallah A, Ghajari M, Safa Y, 2019, Computational modelling of dynamic delamination in morphing composite blades and wings, The International Journal of Multiphysics, Vol: 13, Pages: 393-430, ISSN: 1750-9548

Morphing blades have been promising in lifting restrictions on rated capacity of wind turbines and improving lift-to-drag ratio for aircraft wings at higher operational angles of attack. The present study focuses on one aspect of the response of morphing blades viz. dynamic delamination. A numerical study of delamination in morphing composite blades is conducted. Both components i.e. the composite part and the stiffener are studied. The eXtended Finite Element Method (XFEM) and nonlocal continuum mechanics (peridynamics) have both been used to study fracture in the isotropic stiffener used in conjunction with the blade. As for the composite morphing blade, cohesive elements are used to represent the interlaminar weak zone and delamination has been studied under dynamic pulse loads. Intraply damage is studied using the nonlocal model as the peridynamic model is capable of addressing the problem adequately for the necessary level of sophistication.The differences and similarities between delamination patterns for impulsive, dynamic, and quasi-static loadings are appreciated and in each case detailed analyses of delamination patterns are presented. The dependence of delamination pattern on loading regime is established, however; further parametric studies are not included as they lie beyond the scope of the study. Through the use of fracture energy alone the nonlocal model is capable of capturing intra- and interlaminar fractures. The proposed modelling scheme can thus have a major impact in design applications where dynamic pulse and impact loads of all natures (accidental, extreme, service, etc.) are to be considered and may therefore be utilised in design of lightweight morphing blades and wings where delamination failure mode is an issue.

Journal article

Farajzadeh Khosroshahi S, Duckworth H, Galvanetto U, Ghajari Met al., 2019, The effects of topology and relative density of lattice liners on traumatic brain injury mitigation, Journal of Biomechanics, Vol: 97, ISSN: 0021-9290

This paper evaluates the effects of topology and relative density of helmet lattice liners on mitigating Traumatic Brain Injury (TBI). Finite element (FE) models of new lattice liners with prismatic and tetrahedral topologies were developed. A typical frontal head impact in motorcycle accidents was simulated, and linear and rotational accelerations of the head were recorded. A high-fidelity FE model of TBI was loaded with the accelerations to predict the brain response during the accident. The results show that prismatic lattices have better performance in preventing TBI than tetrahedral lattices and EPS that is typically used in helmets. Moreover, varying the cell size through the thickness of the liner improves its performance, but this effect was marginal. The relative density also has a significant effect, with lattices with lower relative densities providing a better protection. Across different lattices studied here, the prismatic lattice with a relative density of 6% had the best performance and reduced the peak linear and rotational accelerations, Head Injury Criterion (HIC), brain strain and strain rate by 48%, 37%, 49%, 32% and 65% respectively, compared to the EPS liner. These results can be used to guide the design of lattice helmet liners for better mitigation of TBI.

Journal article

Yu X, Ghajari M, 2019, An assessment of blast modelling techniques for injury biomechanics research, International Journal for Numerical Methods in Biomedical Engineering, Vol: 35, Pages: 1-15, ISSN: 1069-8299

Blast-induced Traumatic Brain Injury (TBI) has been affecting combatants and civilians. The blast pressure wave is thought to have a significant contribution to blast related TBI. Due to the limitations and difficulties of conducting blast tests on surrogates, computational modelling has been used as a key method for exploring this field. However, the blast wave modelling methods reported in current literature have drawbacks. They either cannot generate the desirable blast pressure wave history, or they are unable to accurately simulate the blast wave/structure interaction. In addition, boundary conditions, which can have significant effects on model predictions, have not been described adequately. Here, we critically assess the commonly used methods for simulating blast wave propagation in air (open-field blast) and its interaction with the human body. We investigate the predicted blast wave time history, blast wave transmission and the effects of various boundary conditions in 3 dimensional (3D) models of blast prediction. We propose a suitable meshing topology, which enables accurate prediction of blast wave propagation and interaction with the human head and significantly decreases the computational cost in 3D simulations. Finally, we predict strain and strain rate in the human brain during blast wave exposure and show the influence of the blast wave modelling methods on the brain response. The findings presented here can serve as guidelines for accurately modelling blast wave generation and interaction with the human body for injury biomechanics studies and design of prevention systems.

Journal article

Khosroshahi SF, Ghajari M, Galvanetto U, 2019, Assessment of the protective performance of neck braces for motorcycle riders: a finite-element study, International Journal of Crashworthiness, Vol: 24, Pages: 487-498, ISSN: 1358-8265

Neck protective devices for motorcyclists have been introduced fairly recently but there is no standard method to evaluate their performance. The goal of this study is to compare the response of riders’ necks to direct impacts on the helmet with and without such a device. We investigate three common types of cervical injury mechanisms i.e. hyperflexion, hyperextension and lateral bending using finite-element method. The rotational movement of the head with respect to the torso, the neck shearing and axial loads and the stress distribution throughout the cervical vertebrae show that using the investigated type of neck protective device, which is designed to restrain the head–neck motion, can in some cases increase the risk of neck injury. Hence, the design of such devices needs further study and their assessment requires the introduction of relevant standards of evaluation.

Journal article

Whyte T, Stuart C, Mallory A, Ghajari M, Plant D, Siegmund GP, Cripton PAet al., 2019, A review of impact testing methods for headgear in sports: considerations for improved prevention of head injury through research and standards, Journal of Biomechanical Engineering, Vol: 141, ISSN: 0148-0731

Standards for sports headgear were introduced as far back as the 1960s and many have remained substantially unchanged to present day. Since this time, headgear has virtually eliminated catastrophic head injuries such as skull fractures and changed the landscape of head injuries in sports. Mild traumatic brain injury (mTBI) is now a prevalent concern and the effectiveness of headgear in mitigating mTBI is inconclusive for most sports. Given that most current headgear standards are confined to attenuating linear head mechanics and recent brain injury studies have underscored the importance of angular mechanics in the genesis of mTBI, new or expanded standards are needed to foster headgear development and assess headgear performance that addresses all types of sport-related head and brain injuries. The aim of this review is to provide a basis for developing new sports headgear impact tests for standards by summarizing and critiquing: 1) impact testing procedures currently codified in published headgear standards for sports and 2) new or proposed headgear impact test procedures in published literature and/or relevant conferences. Research areas identified as needing further knowledge to support standards test development include defining sports-specific head impact conditions, establishing injury and age appropriate headgear assessment criteria, and the development of headgear specific head and neck surrogates for at-risk populations.

Journal article

Siegkas P, Sharp D, Ghajari M, 2019, The traumatic brain injury mitigation effects of a new viscoelastic add-on liner, Scientific Reports, Vol: 9, Pages: 1-10, ISSN: 2045-2322

Traumatic brain injury (TBI) affects millions of people worldwide with significant personal and social consequences. New materials and methods offer opportunities for improving designs of TBI prevention systems, such as helmets. We combined empirical impact tests and computational modelling to test the effectiveness of new viscoelastic add-on components in decreasing biomechanical forces within the brain during helmeted head impacts. Motorcycle helmets with and without the viscoelastic components were fitted on a head/neck assembly and were tested under oblique impact to replicate realistic accident conditions. Translational and rotational accelerations were measured during the tests. The inclusion of components reduced peak accelerations, with a significant effect for frontal impacts and a marginal effect for side and rear impacts. The head accelerations were then applied on a computational model of TBI to predict strain and strain-rate across the brain. The presence of viscoelastic components in the helmet decreased strain and strain-rate for frontal impacts at low impact speeds. The effect was less pronounced for front impact at high speeds and for side and rear impacts. This work shows the potential of the viscoelastic add-on components as lightweight and cost-effective solutions for enhancing helmet protection and decreasing strain and strain-rate across the brain during head impacts.

Journal article

Yu X, Sharp DJ, Ghajari M, 2018, Investigation of CSF volumetric response and skull flexure effect on blast induced traumatic brain injury, Pages: 762-763, ISSN: 2235-3151

Conference paper

Wang H, Kow J, Raske N, De Boer G, Ghajari M, Hewson RW, Alazmani A, Culmer Pet al., 2017, Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect, Sensors and Actuators A: Physical, Vol: 271, Pages: 44-52, ISSN: 0924-4247

Tactile sensors are essential for robotic systems to interact safely and effectively with the external world, they also play a vital role in some smart healthcare systems. Despite advances in areas including materials/composites, electronics and fabrication techniques, it remains challenging to develop low cost, high performance, durable, robust, soft tactile sensors for real-world applications. This paper presents the first Soft Inductive Tactile Sensor (SITS) which exploits an inductance-transducer mechanism based on the eddy-current effect. SITSs measure the inductance variation caused by changes in AC magnetic field coupling between coils and conductive films. Design methodologies for SITSs are discussed by drawing on the underlying physics and computational models, which are used to develop a range of SITS prototypes. An exemplar prototype achieves a state-of-the-art resolution of 0.82 mN with a measurement range over 15 N. Further tests demonstrate that SITSs have low hysteresis, good repeatability, wide bandwidth, and an ability to operate in harsh environments. Moreover, they can be readily fabricated in a durable form and their design is inherently extensible as highlighted by a 4 × 4 SITS array prototype. These outcomes show the potential of SITS systems to further advance tactile sensing solutions for integration into demanding real-world applications.

Journal article

de Boer G, Raske N, Wang H, Kow J, Alazmani A, Ghajari M, Culmer P, Hewson Ret al., 2017, Design optimisation of a magnetic field based soft tactile sensor, Sensors, Vol: 17, Pages: 1-20, ISSN: 1424-8220

This paper investigates the design optimisation of a magnetic field based soft tactile sensor, comprised of a magnet and Hall effect module separated by an elastomer. The aim was to minimise sensitivity of the output force with respect to the input magnetic field; this was achieved by varying the geometry and material properties. Finite element simulations determined the magnetic field and structural behaviour under load. Genetic programming produced phenomenological expressions describing these responses. Optimisation studies constrained by a measurable force and stable loading conditions were conducted; these produced Pareto sets of designs from which the optimal sensor characteristics were selected. The optimisation demonstrated a compromise between sensitivity and the measurable force, a fabricated version of the optimised sensor validated the improvements made using this methodology. The approach presented can be applied in general for optimising soft tactile sensor designs over a range of applications and sensing modes.

Journal article

Ghajari M, Hellyer PJ, Sharp DJ, 2017, Predicting the location of chronic traumatic encephalopathy pathology, 2017 IRCOBI Conference, Publisher: International Research Council on Biomechanics of Injury (IRCOBI), Pages: 699-700, ISSN: 2235-3151

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to head impacts. Its distinctive neuropathologic feature is deposition of tau proteins in sulcal depths and in perivascular regions. Previous work has investigated pathological and clinical features of CTE, and here the authors report recent work on exploring the link between strain and strain rate distribution within the brain and location of CTE pathology. The authors used a high fidelity finite element (FE) model of traumatic brain injury (TBI) to test the hypothesis that strain and strain rate produced by head impacts are greatest in sulci, where neuropathology is prominently seen in CTE. The authors also analyzed diffusion tensor imaging (DTI) data from a large cohort of TBI patients to provide converging evidence from empirical neuroimaging data for the model’s prediction.

Conference paper

Ghajari M, Hellyer P, Sharp D, 2017, Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology, Brain, Vol: 140, Pages: 333-343, ISSN: 0006-8950

Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter–white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter–white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in sulcal

Journal article

Wang H, de Boer G, Kow J, Ghajari M, Alazmani A, Hewson R, Culmer Pet al., 2017, A low-cost soft tactile sensing array using 3D hall sensors, Procedia Engineering, Vol: 168, Pages: 650-653, ISSN: 1877-7058

Tactile sensors are essential for robotic systems to safely interact with the external world and to precisely manipulate objects. Existing tactile sensors are typically either expensive or limited by poor performance, and most are not mechanically compliant. This work presents MagTrix, a soft tactile sensor array based on four 3D Hall sensors with corresponding permanent magnets. MagTrix has the capability to precisely measure triaxis force (1 mN resolution) and to determine contact area. In summary, the presented tactile sensor is robust, low-cost, high-performance and easily customizable to be integrated into a range of robotic and healthcare applications.

Journal article

Ghajari M, Farajzadeh Khosroshahi S, 2016, Optimization of the chin bar of a composite-shell helmet to mitigate the upper neck force, Applied Composite Materials, Vol: 24, Pages: 931-944, ISSN: 1573-4897

The chin bar of motorcyclefull-face helmets is the most likely region of the helmet tosustain impactsduring accidents, with alarge percentageof these impacts leadingto basilar skull fracture. Currently, helmet chin bars are designed to mitigate the peak acceleration at the centre of gravityof isolated headforms, as required by standards, but they are not designed to mitigate the neck force, which is probably the cause of basilar skull fracture, a type of head injury that can lead to fatalities. Here we test whether it is possible to increase the protection of helmet chin bars while meeting standard requirements. Fibre-reinforced composite shells are commonly used in helmets due to their lightweight and energy absorption characteristics. We optimize the ply orientation of a chin bar made of fibre-reinforced composite layersfor reduction of the neck force in a dummy modelusing a computational approach. We use thefinite element model of a human head/neck surrogateandmeasure the neck axial force, which has been shown to be correlated withthe risk of basilar skull fracture. The results show that by varying the orientationof the chin bar plies, thus keeping the helmetmass constant, the neck axial force can be reduced by approximately 30%while ensuring that the helmet complies withtheimpact attenuation requirementsprescribed in helmet standards.

Journal article

Wang H, de Boer G, Kow J, Alazmani A, Ghajari M, Hewson R, Culmer Pet al., 2016, Design methodology for magnetic field-based soft tri-axis tactile sensors, Sensors, Vol: 16, Pages: 1-20, ISSN: 1424-8220

Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.

Journal article

de Boer GN, Wang H, Ghajari M, Alazmani A, Hewson R, Culmer Pet al., 2016, Force and Topography Reconstruction Using GP and MOR for the TACTIP Soft Sensor System, 17th Annual Conference, TAROS 2016, Publisher: Springer International Publishing, Pages: 65-74, ISSN: 0302-9743

Conference paper

Sharif-Khodaei Z, Ghajari M, Aliabadi MH, 2016, Impact damage detection in composite plates using a self-diagnostic electro-mechanical impedance-based structural health monitoring system, Journal of Multiscale Modelling, Vol: 6, ISSN: 1756-9737

In this work, application of the electro-mechanical impedance (EMI) method in structural health monitoring as a damage detection technique has been investigated. A damage metric based on the real and imaginary parts of the impedance measures is introduced. Numerical and experimental tests are carried out to investigate the applicability of the method for various types of damage, such as debonding between the transducers and the plate, faulty sensors and impact damage in composite plates. The effect of several parameters, such as environmental effects, frequency sweep, severity of damage, location of damage, etc., on the damage metric has been reported.

Journal article

Pangonis R, Ghajari M, Sharp DJ, 2016, Characterisation of brain tissue at high strain rates, Pages: 453-454

Conference paper

Ghajari M, Sharp DJ, 2015, Computational analysis of white matter response to rear and lateral impacts, Pages: 229-230

Conference paper

Psarras S, Ghajari M, Robinson P, 2015, MULTIPLE IMPACT PERFORMANCE OF COMPOSITE FUSELAGE PANEL, 20th International Conference on Composite Materials (ICCM), Publisher: AALBORG UNIV PRESS

Conference paper

Thiene M, Ghajari M, Galvanetto U, Aliabadi MHet al., 2014, Effects of the transfer function evaluation on the impact force reconstruction with application to composite panels, Composite Structures, Vol: 114, Pages: 1-9, ISSN: 0263-8223

The determination of a reliable transfer function for force reconstruction of impacts on composite panels is addressed in the paper. The reconstruction of the impact force history requires the knowledge of the transfer function which relates the response to the contact force. In this paper, a new method to determine the transfer function of a composite plate, instrumented with surface bonded piezoelectric sensors, is proposed. Impact tests are carried out and the data are used to evaluate the transfer function. The force reconstruction results, obtained by using the new transfer function, are compared with the results obtained with the classic approach. Significant improvements are observed in predicting the force history, particularly when large deflections are present; these are quantifiable as an out of plane displacement of the same order of magnitude as the thickness of the plate. The influence of increasing the impact velocity, with the related increase in the contact force, is also studied. The proposed method provides good results over a range of impact velocities. Multiple impacts were also investigated and the method could correctly reconstruct force histories of consecutive impacts.

Journal article

Ghajari M, Iannucci L, Curtis P, 2014, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, Vol: 276, Pages: 431-452, ISSN: 0045-7825

A new material model for the dynamic fracture analysis of anisotropic materials has been proposed within the framework of the bond-based peridynamic theory. This model enables predicting complex fracture phenomena such as spontaneous crack nucleation and crack branching, curving and arrest, a capability inherited from the bond-based peridynamic theory. An important feature of the model is that the bond properties, i.e. the stiffness constant and critical stretch, are continuous functions of bond orientation in the principal material axes. This facilitates fracture analysis of anisotropic materials with random orientations, such as polycrystalline microstructures. Elastic and fracture behaviour of the model has been verified through simulating uniaxial tension of a composite plate and fracture of a cortical bone compact tension specimen, and making quantitative comparisons to analytical and experimental data. To further demonstrate the capabilities of the proposed model, dynamic fracture of a polycrystalline microstructure (alumina ceramic) has been simulated. The influence of the grain boundary and grain interior fracture energies on the interacting and competing fracture modes of polycrystalline materials, i.e. intergranular and transgranular fracture, has been studied.

Journal article

Psarras S, Ghajari M, Robinson P, Iannucci Let al., 2014, Performance of composite plates after multi-site impacts

Sequential multi-site low velocity impacts (LVI) were performed on CFRP composite plates with different thicknesses and the compression after impact (CAI) behaviour was then investigated. A modified CAI rig was designed and manufactured for testing thin composites. A Finite Element (FE) model of the laminate was developed using continuum shell elements. Layers of cohesive elements were inserted between sublaminates in order to model delamination initiation and growth during impacts. An energy-based damage model, developed at Imperial College and implemented into the Abaqus FE system as a user material subroutine, was employed to represent translaminar damage. Finally, the experimentally observed behaviour of the impacted specimens and the accuracy of the FE predictions are discussed.

Conference paper

Childs PRN, Bull AMJ, Ghajari M, 2013, Helmet Performance and Design, Publisher: DEG, ISBN: 978-0-9572298-3-9

Book

Thiene M, Galvanetto U, Ghajari M, Aliabadi MHet al., 2013, A frequency analysis applied to force identification, Fifth International Conference on Structural Engineering, Mechanics and Computation

Conference paper

Ghajari M, Sharif-Khodaei Z, Aliabadi MH, Apicella Aet al., 2013, Identification of impact force for smart composite stiffened panels, SMART MATERIALS AND STRUCTURES, Vol: 22, ISSN: 0964-1726

Journal article

Ghajari M, Caserta GD, Galvanetto U, 2013, The Impact Attenuation Test of Motorcycle Helmet Standards, First International Conference on Helmet Performance and Design

Conference paper

Ghajari M, Peldschus S, Galvanetto U, Iannucci Let al., 2013, Effects of the presence of the body in helmet oblique impacts, ACCIDENT ANALYSIS AND PREVENTION, Vol: 50, Pages: 263-271, ISSN: 0001-4575

Journal article

Khodaei ZS, Ghajari M, Aliabadi MH, Apicella Aet al., 2013, SMART Platform for Structural Health Monitoring of Sensorised Stiffened Composite Panels, 11th International Conference on Fracture and Damage Mechanics, Publisher: TRANS TECH PUBLICATIONS LTD, Pages: 581-+, ISSN: 1013-9826

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00540028&person=true&page=2&respub-action=search.html