Imperial College London

ProfessorMarkGirolami

Faculty of Natural SciencesDepartment of Mathematics

Chair in Statistics
 
 
 
//

Contact

 

m.girolami Website

 
 
//

Location

 

539Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Szymkowiak-Have:2006:10.1109/TNN.2005.860840,
author = {Szymkowiak-Have, A and Girolami, MA and Larsen, J},
doi = {10.1109/TNN.2005.860840},
journal = {IEEE Trans Neural Netw},
pages = {256--264},
title = {Clustering via kernel decomposition.},
url = {http://dx.doi.org/10.1109/TNN.2005.860840},
volume = {17},
year = {2006}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Spectral clustering methods were proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this letter, the affinity matrix is created from the elements of a nonparametric density estimator and then decomposed to obtain posterior probabilities of class membership. Hyperparameters are selected using standard cross-validation methods.
AU - Szymkowiak-Have,A
AU - Girolami,MA
AU - Larsen,J
DO - 10.1109/TNN.2005.860840
EP - 264
PY - 2006///
SN - 1045-9227
SP - 256
TI - Clustering via kernel decomposition.
T2 - IEEE Trans Neural Netw
UR - http://dx.doi.org/10.1109/TNN.2005.860840
UR - https://www.ncbi.nlm.nih.gov/pubmed/16526496
VL - 17
ER -