Imperial College London

ProfessorMichaelJohnson

Faculty of MedicineDepartment of Brain Sciences

Professor of Neurology and Genomic Medicine
 
 
 
//

Contact

 

m.johnson Website

 
 
//

Location

 

E419Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

102 results found

Kobow K, Reid CA, van Vliet EA, Becker AJ, Carvill GL, Goldman AM, Hirose S, Lopes-Cendes I, Khiari HM, Poduri A, Johnson MR, Henshall DCet al., 2020, Epigenetics explained: a topic "primer" for the epilepsy community by the ILAE Genetics/Epigenetics Task Force, EPILEPTIC DISORDERS, Vol: 22, Pages: 127-141, ISSN: 1294-9361

Journal article

Wolking S, Schulz H, Nies AT, McCormack M, Schaeffeler E, Auce P, Avbersek A, Becker F, Klein KM, Krenn M, Møller RS, Nikanorova M, Weckhuysen S, Consortium E, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BP, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Weber YG, Krause R, Sisodiya S, Schwab M, Sander T, Lerche Het al., 2020, Pharmacoresponse in genetic generalized epilepsy: a genome-wide association study., Pharmacogenomics, Vol: 21, Pages: 325-335

Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE - responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.

Journal article

Wolking S, Moreau C, Nies AT, Schaeffeler E, McCormack M, Auce P, Avbersek A, Becker F, Krenn M, Møller RS, Nikanorova M, Weber YG, Weckhuysen S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Schwab M, Krause R, Sisodiya SM, Cossette P, Girard SL, Lerche H, EpiPGX Consortiumet al., 2020, Testing association of rare genetic variants with resistance to three common antiseizure medications, Epilepsia, Vol: 61, Pages: 657-666, ISSN: 0013-9580

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.

Journal article

Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, Polyak A, Ross TL, Gerhauser I, Bankstahl JP, Johnson MR, Bankstahl M, Löscher Wet al., 2020, Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy, Neurobiology of Disease, Vol: 134, Pages: 1-16, ISSN: 0969-9961

Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.

Journal article

Miller TD, Chong TT-J, Aimola Davies AM, Johnson MR, Irani SR, Husain M, Ng TW, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CRet al., 2020, Human hippocampal CA3 damage disrupts both recent and remote episodic memories, eLife, Vol: 9, ISSN: 2050-084X

Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance.

Journal article

Johnson MR, 2020, Re: Time to move beyond genetics towards biomedical data-driven translational genomic research in severe paediatric epilepsies., European Journal of Paediatric Neurology, Vol: 24, Pages: 4-4, ISSN: 1090-3798

Journal article

Heavin SB, McCormack M, Wolking S, Slattery L, Walley N, Avbersek A, Novy J, Sinha SR, Radtke R, Doherty C, Auce P, Craig J, Johnson MR, Koeleman BPC, Krause R, Kunz WS, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Stefansson H, Striano P, Zara F, EPIGEN Consortium, EpiPGX Consortium, Depondt C, Sisodiya S, Goldstein D, Lerche H, Cavalleri GL, Delanty Net al., 2019, Genomic and clinical predictors of lacosamide response in refractory epilepsies, Epilepsia Open, Vol: 4, Pages: 563-571, ISSN: 2470-9239

Objective: Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. Methods: We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes. Results: Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (<25% seizure reduction). No variants reached the genome-wide significance threshold in our case-control analysis. Significance: No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide.

Journal article

Johnson MR, Kaminski RM, 2019, A systems-level framework for anti-epilepsy drug discovery, Neuropharmacology, ISSN: 0028-3908

Modern anti-seizure drug development yielded benefits in terms of improved pharmacokinetics, safety and tolerability profiles, but offered no advances in efficacy compared to previous older generations of anti-seizure drugs. Despite significant advances in our understanding of the genetic bases to epilepsy, and a welcome renewed interest on the severe monogenic epilepsies, modern genetics has yet to directly inform more effective or disease-modifying anti-seizure drugs. Here, we describe a new approach to the identification of novel disease modifying anti-epilepsy drugs. The systems genetics approach aims to first identify pathophysiological mechanisms by integrating polygenic risk with cellular gene expression profiles and then to relate these molecular mechanisms to druggable targets using a gene regulatory (regulome) framework. The approach offers an exciting and flexible framework for future drug discovery in epilepsy, and is applicable to any disease for which appropriate cell-type and disease-context specific data exist.

Journal article

Leu C, Stevelink R, Smith AW, Goleva SB, Kanai M, Ferguson L, Campbell C, Kamatani Y, Okada Y, Sisodiya SM, Cavalleri GL, Koeleman BPC, Lerche H, Jehi L, Davis LK, Najm IM, Palotie A, Daly MJ, Busch RM, Epi25 Consortium, Lal Det al., 2019, Polygenic burden in focal and generalized epilepsies., Brain, Vol: 142, Pages: 3473-3481

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish Europ

Journal article

Laaniste L, Srivastava P, Stylianou T, Syed N, Cases-Cunillera S, Shkura K, Zeng Q, Rackham O, Langley S, Delahaye-Duriez A, O'Neill K, Williams M, Becker A, Roncaroli F, Petretto E, Johnson Met al., 2019, Integrated systems-genetic analyses reveal a network target for delaying glioma progression, Annals of Clinical and Translational Neurology, Vol: 6, Pages: 1616-1638, ISSN: 2328-9503

ObjectiveTo identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery.MethodsUsing an integrated functional genomics approach, we prioritized networks associated with astrocytoma progression using the following criteria: differential co‐expression between grade II and grade III IDH1‐mutated and 1p/19q euploid astrocytomas, preferential enrichment for genetic risk to cancer, association with patient survival and sample‐level genomic features. Drugs targeting the identified multitarget network characteristic for astrocytoma transformation were computationally predicted using drug transcriptional perturbation data and validated using primary human astrocytoma cells.ResultsA single network, M2, consisting of 177 genes, was associated with glioma progression on the basis of the above criteria. Functionally, M2 encoded physically interacting proteins regulating cell cycle processes and analysis of genome‐wide gene‐regulatory interactions using mutual information and DNA–protein interactions revealed the known regulators of cell cycle processes FoxM1, B‐Myb, and E2F2 as key regulators of M2. These results suggest functional disruption of M2 via gene mutation or altered expression as a convergent pathway regulating astrocytoma transformation. By considering M2 as a multitarget drug target regulating astrocytoma transformation, we identified several drugs that are predicted to restore M2 expression in anaplastic astrocytoma toward its low‐grade profile and of these, we validated the known antiproliferative drug resveratrol as down‐regulating multiple nodes of M2 including at nanomolar concentrations achievable in human cerebrospinal fluid by oral dosing.InterpretationOur results identify M2 as a multitarget network characteristic for astrocytoma progression and encourage M2‐based drug screening to identify new compounds for preventing glioma transformation.

Journal article

Silvennoinen K, de Lange N, Zagaglia S, Balestrini S, Androsova G, Wassenaar M, Auce P, Avbersek A, Becker F, Berghuis B, Campbell E, Coppola A, Francis B, Wolking S, Cavalleri GL, Craig J, Delanty N, Johnson MR, Koeleman BPC, Kunz WS, Lerche H, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Striano P, Zara F, van der Palen J, Krause R, Depondt C, Sisodiya SM, EpiPGX Consortiumet al., 2019, Comparative effectiveness of antiepileptic drugs in juvenile myoclonic epilepsy, Epilepsia Open, Vol: 4, Pages: 420-430, ISSN: 2470-9239

Objective: To study the effectiveness and tolerability of antiepileptic drugs (AEDs) commonly used in juvenile myoclonic epilepsy (JME). Methods: People with JME were identified from a large database of individuals with epilepsy, which includes detailed retrospective information on AED use. We assessed secular changes in AED use and calculated rates of response (12-month seizure freedom) and adverse drug reactions (ADRs) for the five most common AEDs. Retention was modeled with a Cox proportional hazards model. We compared valproate use between males and females. Results: We included 305 people with 688 AED trials of valproate, lamotrigine, levetiracetam, carbamazepine, and topiramate. Valproate and carbamazepine were most often prescribed as the first AED. The response rate to valproate was highest among the five AEDs (42.7%), and significantly higher than response rates for lamotrigine, carbamazepine, and topiramate; the difference to the response rate to levetiracetam (37.1%) was not significant. The rates of ADRs were highest for topiramate (45.5%) and valproate (37.5%). Commonest ADRs included weight change, lethargy, and tremor. In the Cox proportional hazards model, later start year (1.10 [1.08-1.13], P < 0.001) and female sex (1.41 [1.07-1.85], P = 0.02) were associated with shorter trial duration. Valproate was associated with the longest treatment duration; trials with carbamazepine and topiramate were significantly shorter (HR [CI]: 3.29 [2.15-5.02], P < 0.001 and 1.93 [1.31-2.86], P < 0.001). The relative frequency of valproate trials shows a decreasing trend since 2003 while there is an increasing trend for levetiracetam. Fewer females than males received valproate (76.2% vs 92.6%, P = 0.001). Significance: In people with JME, valproate is an effective AED; levetiracetam emerged as an alternative. Valproate is now contraindicated in women of childbearing potential without special precautions. Wi

Journal article

Feng Y-CA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Singh T, Heyne H, Byrnes A, Churchhouse C, Watts N, Solomonson M, Lal D, Heinzen EL, Dhindsa RS, Stanley KE, Cavalleri GL, Hakonarson H, Helbig I, Krause R, May P, Weckhuysen S, Petrovski S, Kamalakaran S, Sisodiya SM, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Kwan P, Marson AG, Stewart R, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, McKenna K, Regan BM, Bellows ST, Leu C, Bennett CA, Johns EMC, Macdonald A, Shilling H, Burgess R, Weckhuysen D, Bahlo M, OBrien TJ, Todaro M, Stamberger H, Andrade DM, Sadoway TR, Mo K, Krestel H, Gallati S, Papacostas SS, Kousiappa I, Tanteles GA, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Kunz WS, Zsurka G, Elger CE, Bauer J, Rademacher M, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Hengsbach C, Rau S, Maisch AF, Steinhoff BJ, Schulze-Bonhage A, Schubert-Bast S, Schreiber H, Borggräfe I, Schankin CJ, Mayer T, Korinthenberg R, Brockmann K, Kurlemann G, Dennig D, Madeleyn R, Kälviäinen R, Auvinen P, Saarela A, Linnankivi T, Lehesjoki A-E, Rees MI, Chung S-K, Pickrell WO, Powell R, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CHT, Barišić N, Delanty N, Doherty CP, Shukralla A, McCormack M, El-Naggar H, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Zara F, Iacomino M, Madia F, Vari MS, Mancardi MM, Salpietro V, Bisulli F, Tinuper P, Licchetta L, Pippucci T, Stipa C, Minardi R, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Marini C, Suzuki T, Inoue Y, Yamakawa K, Tumiene B, Sadleir LG, King C, Mountier E, Caglayan SH, Arslan M, Yapıcı Z, Yis U, Topaloglu P, Kara B Tet al., 2019, Ultra-rare genetic variation in the epilepsies: A whole-exome sequencing study of 17,606 individuals, The American Journal of Human Genetics, Vol: 105, Pages: 267-282, ISSN: 0002-9297

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.

Journal article

Berghuis B, Stapleton C, Sonsma ACM, Hulst J, de Haan GJ, Lindhout D, Demurtas R, Krause R, Depondt C, Kunz WS, Zara F, Striano P, Craig J, Auce P, Marson AG, Stefansson H, O'Brien TJ, Johnson MR, Sills GJ, Wolking S, Lerche H, Sisodiya SM, Sander JW, Cavalleri GL, Koeleman BPC, McCormack Met al., 2019, A genome-wide association study of sodium levels and drug metabolism in an epilepsy cohort treated with carbamazepine and oxcarbazepine, Epilepsia Open, Vol: 4, Pages: 102-109, ISSN: 2470-9239

Epilepsia Open published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy. Objective: To ascertain the clinical and genetic factors contributing to carbamazepine- and oxcarbazepine-induced hyponatremia (COIH), and to carbamazepine (CBZ) metabolism, in a retrospectively collected, cross-sectional cohort of people with epilepsy. Methods: We collected data on serum sodium levels and antiepileptic drug levels in people with epilepsy attending a tertiary epilepsy center while on treatment with CBZ or OXC. We defined hyponatremia as Na+ ≤134 mEq/L. We estimated the CBZ metabolic ratio defined as the log transformation of the ratio of metabolite CBZ-diol to unchanged drug precursor substrate as measured in serum. Results: Clinical and genetic data relating to carbamazepine and oxcarbazepine trials were collected in 1141 patients. We did not observe any genome-wide significant associations with sodium level in a linear trend or hyponatremia as a dichotomous trait. Age, sex, number of comedications, phenytoin use, phenobarbital use, and sodium valproate use were significant predictors of CBZ metabolic ratio. No genome-wide significant associations with CBZ metabolic ratio were found. Significance: Although we did not detect a genetic predictor of hyponatremia or CBZ metabolism in our cohort, our findings suggest that the determinants of CBZ metabolism are multifactorial.

Journal article

Silvennoinen K, de Lange N, Zagaglia S, Balestrini S, Androsova G, Borghei M, Wassenaar M, Auce P, Avbersek, Becker F, Berghuis B, Campbell E, Coppola A, Francis B, Wolking S, Cavalleri GL, Craig J, Delanty N, Johnson MR, Koeleman BPC, Kunz WS, Lerche H, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Striano P, Zara F, Krause R, Depondt C, Sisodiya SMet al., 2018, Retrospective Analysis Of Antiepileptic Drug Effectiveness And Tolerability In Juvenile Myoclonic Epilepsy, 13th European Congress on Epileptology, Publisher: WILEY, Pages: S219-S220, ISSN: 0013-9580

Conference paper

The International League Against Epilepsy Consortium on Complex Epilepsies, 2018, Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies, Nature Communications, Vol: 9, ISSN: 2041-1723

The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology.

Journal article

Srivastava P, van Eyll J, Godard P, Manuela M, Delahaye-Duriez A, Van Steenwinckel J, Gressens P, Danis B, Vandenplas C, Patrik F, Leclercq K, Mairet-Coello G, Cardenas A, Vanclef F, Laaniste L, Niespodziany I, Keaney J, Gasser J, Gillet G, Shkura K, Chong S-A, Behmoaras J, Kadiu I, Petretto EG, Kaminski R, Johnson Met al., 2018, A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target, Nature Communications, Vol: 9, ISSN: 2041-1723

The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.

Journal article

May P, Girard S, Harrer M, Bobbili DR, Schubert J, Wolking S, Becker F, Lachance-Touchette P, Meloche C, Gravel M, Niturad CE, Knaus J, De Kovel C, Toliat M, Polvi A, Iacomino M, Guerrero-Lopez R, Baulac S, Marini C, Thiele H, Altmueller J, Jabbari K, Ruppert A-K, Jurkowski W, Lal D, Rusconi R, Cestele S, Terragni B, Coombs ID, Reid CA, Striano P, Caglayan H, Siren A, Everett K, Moller RS, Hjalgrim H, Muhle H, Helbig I, Kunz WS, Weber YG, Weckhuysen S, De Jonghe P, Sisodiya SM, Nabbout R, Franceschetti S, Coppola A, Vari MS, Trenite DK-N, Baykan B, Ozbek U, Bebek N, Klein KM, Rosenow F, Nguyen DK, Dubeau F, Carmant L, Lortie A, Desbiens R, Clement J-F, Cieuta-Walti C, Sills GJ, Auce P, Francis B, Johnson MR, Marson AG, Berghuis B, Sander JW, Avbersek A, McCormack M, Cavalleri GL, Delanty N, Depondt C, Krenn M, Zimprich F, Peter S, Nikanorova M, Kraaij R, van Rooij J, Balling R, Ikram MA, Uitterlinden AG, Avanzini G, Schorge S, Petrou S, Mantegazza M, Sander T, LeGuern E, Serratosa JM, Koeleman BPC, Palotie A, Lehesjoki A-E, Nothnagel M, Nuernberg P, Maljevic S, Zara F, Cossette P, Krause R, Lerche Het al., 2018, Rare coding variants in genes encoding GABA(A) receptors in genetic generalised epilepsies: an exome-based case-control study, Lancet Neurology, Vol: 17, Pages: 699-708, ISSN: 1474-4422

BackgroundGenetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy.MethodsFor this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes.FindingsStatistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41–4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05–2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare mis

Journal article

McCormack M, Gui H, Ingason A, Speed D, Wright GEB, Zhang EJ, Secolin R, Yasuda C, Kwok M, Wolking S, Becker F, Rau S, Avbersek A, Heggeli K, Leu C, Depondt C, Sills GJ, Marson AG, Auce P, Brodie MJ, Francis B, Johnson MR, Koeleman BPC, Striano P, Coppola A, Zara F, Kunz WS, Sander JW, Lerche H, Klein KM, Weckhuysen S, Krenn M, Gudmundsson LJ, Stefansson K, Krause R, Shear N, Ross CJD, Delanty N, Pirmohamed M, Carleton BC, Cendes F, Lopes-Cendes I, Liao W-P, O'Brien TJ, Sisodiya SM, Cherny S, Kwan P, Baum L, Cavalleri GLet al., 2017, Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients, NEUROLOGY, Vol: 90, Pages: E332-E341, ISSN: 0028-3878

Objective To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs.Methods We conducted a case-control genome-wide association study of autosomal genotypes, including Class I and II human leukocyte antigen (HLA) alleles, in 323 cases and 1,321 drug-tolerant controls from epilepsy cohorts of northern European and Han Chinese descent. Results from each cohort were meta-analyzed.Results We report an association between a rare variant in the complement factor H–related 4 (CFHR4) gene and phenytoin-induced MPE in Europeans (p = 4.5 × 10–11; odds ratio [95% confidence interval] 7 [3.2–16]). This variant is in complete linkage disequilibrium with a missense variant (N1050Y) in the complement factor H (CFH) gene. In addition, our results reinforce the association between HLA-A*31:01 and carbamazepine hypersensitivity. We did not identify significant genetic associations with MPE among Han Chinese patients.Conclusions The identification of genetic predictors of MPE in CFHR4 and CFH, members of the complement factor H–related protein family, suggest a new link between regulation of the complement system alternative pathway and phenytoin-induced hypersensitivity in European-ancestral patients.

Journal article

Srivastava PK, Roncon P, Lukasiuk K, Gorter JA, Aronica E, Pitkänen A, Petretto E, Johnson MR, Simonato Met al., 2017, Meta-Analysis of MicroRNAs Dysregulated in the Hippocampal Dentate Gyrus of Animal Models of Epilepsy., eNeuro, Vol: 4, ISSN: 2373-2822

The identification of mechanisms transforming normal to seizure-generating tissue after brain injury is key to developing new antiepileptogenic treatments. MicroRNAs (miRNAs) may act as regulators and potential treatment targets for epileptogenesis. Here, we undertook a meta-analysis of changes in miRNA expression in the hippocampal dentate gyrus (DG) following an epileptogenic insult in three epilepsy models. We identified 26 miRNAs significantly differentially expressed during epileptogenesis, and five differentially expressed in chronic epilepsy. Of these, 13 were not identified in any of the individual studies. To assess the role of these miRNAs, we predicted their mRNA targets and then filtered the list to include only target genes expressed in DG and negatively correlated with miRNA expression. Functional enrichment analysis of mRNA targets of miRNAs dysregulated during epileptogenesis suggested a role for molecular processes related to inflammation and synaptic function. Our results identify new miRNAs associated with epileptogenesis from existing data, highlighting the utility of meta-analysis in maximizing value from preclinical data.

Journal article

van Vliet EA, Puhakka N, Mills JD, Srivastava PK, Johnson MR, Roncon P, Das Gupta S, Karttunen J, Simonato M, Lukasiuk K, Gorter JA, Aronica E, Pitkänen Aet al., 2017, Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs., Epilepsia, Vol: 58, Pages: 2013-2024, ISSN: 0013-9580

The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs. More importantly, treatments to prevent or modify epileptogenesis do not exist. Therefore, novel therapies are urgently needed. In this respect, it is important to identify which patients will develop epilepsy and which individually tailored treatment is needed. However, currently, we have no tools to identify the patients at risk, and diagnosis of epileptogenesis remains as a major unmet medical need, which relates to lack of diagnostic biomarkers for epileptogenesis. As the epileptogenic process in humans is typically slow, the use of animal models is justified to speed up biomarker discovery. We aim to summarize recommendations for molecular biomarker research and propose a standardized procedure for biomarker discovery in rat models of epileptogenesis. The potential of many phylogenetically conserved circulating noncoding small RNAs, including microRNAs (miRNAs), as biomarkers has been explored in various brain diseases, including epilepsy. Recent studies show the feasibility of detecting miRNAs in blood in both experimental models and human epilepsy. However, the analysis of circulating miRNAs in rodent models is challenging, which relates both to the lack of standardized sampling protocols and to analysis of miRNAs. We will discuss the issues critical for preclinical plasma biomarker discovery, such as documentation, blood and brain tissue sampling and collection, plasma separation and storage, RNA extraction, quality control, and RNA detection. We propose a protocol for standardization of procedures for discovery of circulating miRNA biomarkers in rat models of epileptogenesis. Ultimately, we hope that the preclinical standardization will facilitate clinical biomarker discovery for epileptogenesis in man.

Journal article

Allen AS, Berkovic SF, Bridgers J, Cossette P, Dlugos D, Epstein MP, Glauser T, Goldstein DB, Heinzen EL, Jiang Y, Johnson MR, Kuzniecky R, Lowenstein DH, Marson AG, Mefford HC, O'Brien TJ, Ottman R, Petrou S, Petrovski S, Poduri A, Ren Z, Scheffer IE, Sherr E, Wang Q, Balling R, Barisic N, Baulac S, Caglayan H, Craiu D, De Jonghe P, Depienne C, Guerrini R, Helbig I, Hjalgrim H, Hoffman-Zacharska D, Jaehn J, Klein KM, Koeleman B, Komarek V, Krause R, Leguern E, Lehesjoki A-E, Lemke JR, Lerche H, Linnankivi T, Marini C, May P, Moller RS, Muhle H, Pal D, Palotie A, Rosenow F, Selmer K, Serratosa JM, Sisodiya S, Stephani U, Sterbova K, Striano P, Suls A, Talvik T, von Spiczak S, Weber Y, Weckhuysen S, Zara F, Abou-Khalil B, Alldredge BK, Amrom D, Andermann E, Andermann F, Bautista JF, Berkovic SF, Bluvstein J, Cascino GD, Consalvo D, Crumrine P, Devinsky O, Dlugos D, Epstein MP, Fiol ME, Fountain NB, French J, Friedman D, Glauser T, Haas K, Haut SR, Hayward J, Joshi S, Kanner A, Kirsch HE, Kossoff EH, Kuperman R, Kuzniecky R, Lowenstein DH, McGuire SM, Motika PV, Novotny EJ, Ottman R, Paolicchi JM, Parent J, Park K, Poduri A, Scheffer IE, Shellhaas RA, Sherr E, Sirven J, Smith MC, Sullivan J, Thio LL, Venkat A, Vining EPG, Von Allmen GK, Weisenberg JL, Widdess-Walsh P, Winawer MRet al., 2017, Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data, EUROPEAN JOURNAL OF HUMAN GENETICS, Vol: 25, Pages: 894-899, ISSN: 1018-4813

Journal article

Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJet al., 2017, Reevaluation of SNP heritability in complex human traits, Nature Genetics, Vol: 49, Pages: 986-992, ISSN: 1061-4036

SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for many hundreds of traits. Its estimation requires strong prior assumptions about the distribution of heritability across the genome, but current assumptions have not been thoroughly tested. By analyzing imputed data for a large number of human traits, we empirically derive a model that more accurately describes how heritability varies with minor allele frequency (MAF), linkage disequilibrium (LD) and genotype certainty. Across 19 traits, our improved model leads to estimates of common SNP heritability on average 43% (s.d. 3%) higher than those obtained from the widely used software GCTA and 25% (s.d. 2%) higher than those from the recently proposed extension GCTA-LDMS. Previously, DNase I hypersensitivity sites were reported to explain 79% of SNP heritability; using our improved heritability model, their estimated contribution is only 24%.

Journal article

Srivastava PK, Bagnati M, Delahaye-Duriez A, KO J-H, Rotival M, Langley SR, Shkura K, Mazzuferi M, Danis B, Eyll JV, Foerch P, Behmoaras J, Kaminski RM, Petretto E, Johnson MRet al., 2017, Genome-wide analysis of differential RNA editing in epilepsy, Genome Research, Vol: 27, Pages: 440-450, ISSN: 1549-5469

The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.

Journal article

Symonds JD, Zuberi SM, Johnson MR, 2017, Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment, CURRENT OPINION IN NEUROLOGY, Vol: 30, Pages: 193-199, ISSN: 1350-7540

Purpose of review: Epilepsy genetics is shifting from the academic pursuit of gene discovery to a clinical discipline based on molecular diagnosis and stratified medicine. We consider the latest developments in epilepsy genetics and review how gene discovery in epilepsy is influencing the clinical classification of epilepsy and informing new therapeutic approaches and drug discovery.Recent findings: Recent studies highlighting the importance of mutation in GABA receptors, NMDA receptors, potassium channels, G-protein coupled receptors, mammalian target of rapamycin pathway and chromatin remodeling are discussed. Examples of precision medicine in epilepsy targeting gain-of-function mutations in KCNT1, GRIN2A, GRIN2D and SCN8A are presented. Potential reasons for the paucity of examples of precision medicine for loss-of-function mutations or in non-ion channel epilepsy genes are explored. We highlight how systems genetics and gene network analyses have suggested that pathways disrupted in epilepsy overlap with those of other neurodevelopmental traits including human cognition. We review how network-based computational approaches are now being applied to epilepsy drug discovery.Summary: We are living in an unparalleled era of epilepsy gene discovery. Advances in clinical care from this progress are already materializing through improved clinical diagnosis and stratified medicine. The application of targeted drug repurposing based on single gene defects has shown promise for epilepsy arising from gain-of-function mutations in ion-channel subunit genes, but important barriers remain to translating these approaches to non-ion channel epilepsy genes and loss-of-function mutations. Gene network analysis offers opportunities to discover new pathways for epilepsy, to decipher epilepsy's relationship to other neurodevelopmental traits and to frame a new approach to epilepsy drug discovery.

Journal article

Miller TD, Chong TT-J, Davies AMA, Ng TWC, Johnson MR, Irani SR, Vincent A, Husain M, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CRet al., 2017, Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis, BRAIN, Vol: 140, Pages: 1212-1219, ISSN: 0006-8950

Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.

Journal article

Allen AS, Bellows ST, Berkovic SF, Bridgers J, Burgess R, Cavalleri G, Chung S-K, Cossette P, Delanty N, Dlugos D, Epstein MP, Freyer C, Goldstein DB, Heinzen EL, Hildebrand MS, Johnson MR, Kuzniecky R, Lowenstein DH, Marson AG, Mayeux R, Mebane C, Mefford HC, O'Brien TJ, Ottman R, Petrou S, Petrovski S, Pickrell WO, Poduri A, Radtke RA, Rees MI, Regan BM, Ren Z, Scheffer IE, Sills GJ, Thomas RH, Wang Q, Abou-Khalil B, Alldredge BK, Amrom D, Andermann E, Andermann F, Bautista JF, Berkovic SF, Bluvstein J, Boro A, Cascino GD, Consalvo D, Crumrine P, Devinsky O, Dlugos D, Epstein MP, Fiol M, Fountain NB, French J, Freyer C, Friedman D, Geller EB, Glauser T, Glynn S, Haas K, Haut SR, Hayward J, Helmers SL, Joshi S, Kanner A, Kirsch HE, Knowlton RC, Kossoff EH, Kuperman R, Kuzniecky R, Lowenstein DH, Motika PV, Novotny EJ, Ottman R, Paolicchi JM, Parent JM, Park K, Poduri A, Sadleir LG, Scheffer IE, Shellhaas RA, Sherr EH, Shih JJ, Shinnar S, Singh RK, Sirven J, Smith MC, Sullivan J, Thio LL, Venkat A, Vining EPG, Von Allmen GK, Weisenberg JL, Widdess-Walsh P, Winawer MRet al., 2017, Ultra-rare genetic variation in common epilepsies: a case-control sequencing study, The Lancet Neurology, Vol: 16, Pages: 135-143, ISSN: 1474-4422

BackgroundDespite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies.MethodsWe did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies.FindingsWe separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7–3·2, p=9·1 × 10−8; familial non-acquired focal epilepsy 3·6, 2·7–4·9, p=1·1 × 10−17). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting fo

Journal article

Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L, Moreno-Moral A, Danis B, Foerch P, Gazina EV, Richards K, Petrou S, Kaminski R, Petretto E, Johnson MRet al., 2016, Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery, Genome Biology, Vol: 17, ISSN: 1474-760X

BackgroundThe relationship between monogenic and polygenic forms of epilepsy is poorly understood, and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy.ResultsWe identify a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy, and for common variants associated with polygenic epilepsy. The genes in M30 network are expressed widely in the human brain under tight developmental control, and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within M30 network are preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent down-regulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanismregulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the down-regulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons.ConclusionsTaken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy.

Journal article

Scott G, Mahmud M, Owen DR, Johnson MRet al., 2016, Microglial positron emission tomography (PET) imaging in epilepsy: applications, opportunities and pitfalls, Seizure-European Journal of Epilepsy, Vol: 44, Pages: 42-47, ISSN: 1059-1311

Neuroinflammation is increasingly implicated in epileptogenesis and epilepsy. Microglia are an important mediator of central nervous system inflammation, and the development of positron emission tomography (PET) radioligands which bind the Translocator Protein (TSPO), an outer mitochondrial membrane protein expressed by microglia, has enabled in vivo measurement of neuroinflammation. Here, we outline the principles and potential pitfalls of TSPO PET imaging in relation to epilepsy, and opportunities for using TSPO imaging as a biomarker for future anti-inflammatory based therapeutics in epilepsy.

Journal article

Johnson MR, Shkura K, Langley SR, Delahaye-Duriez A, Srivastava P, Hill WD, Rackham OJL, Davies G, Harris SE, Moreno-Moral A, Rotival M, Speed D, Petrovski S, Katz A, Hayward C, Porteous DJ, Smith BH, Padmanabhan S, Hocking LJ, Starr JM, Liewald DC, Visconti A, Falchi M, Bottolo L, Rossetti T, Danis B, Mazzuferi M, Foerch P, Grote A, Helmstaedter C, Becker AJ, Kaminski RM, Deary IJ, Petretto Eet al., 2016, Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease, Nature Neuroscience, Vol: 19, Pages: 223-232, ISSN: 1546-1726

Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

Journal article

Warburton A, Miyajima F, Shazadi K, Crossley J, Johnson MR, Marson AG, Baker GA, Quinn JP, Sills GJet al., 2016, NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy, Epilepsy & Behavior, Vol: 54, Pages: 117-127, ISSN: 1525-5069

Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF–BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00426886&limit=30&person=true