Imperial College London

DrMichailKiziroglou

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Research Associate
 
 
 
//

Contact

 

+44 (0)20 7594 6216m.kiziroglou

 
 
//

Location

 

706Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

69 results found

Allmen LV, Bailleul G, Becker T, Decotignie J-D, Kiziroglou ME, Leroux C, Mitcheson PD, Mueller J, Piguet D, Toh TT, Weisser A, Wright SW, Yeatman EMet al., 2017, Aircraft Strain WSN Powered by Heat Storage Harvesting, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol: 64, Pages: 7284-7292, ISSN: 0278-0046

JOURNAL ARTICLE

Gramling HM, Kiziroglou ME, Yeatman EM, 2017, Nanotechnology for Consumer Electronics, Nanoelectronics: Materials, Devices, Applications, Pages: 501-526, ISBN: 9783527800728

© 2017 Wiley-VCH Verlag GmbH & Co.KGaA. All rights reserved. Nanotechnology is already inherent in communication modules through the ubiquitous use of low cost, highly functional silicon integrated circuits. Motion processing units, portable biomedical sensors, and imaging sensors are discussed along with relevant nanotechnologies, both current and imminent. Nanotechnology-enhanced glucose sensors are expected in commercial glucose monitoring systems in the next few years. Nevertheless, advances in nanotechnology could soon play a significant role in the evolution of optical sensors for consumer electronics. Nanotechnology is expected to play a significant role in the technology evolution of organic light-emitting diode (OLED) devices. Nanotechnologies are of critical importance to the progress of liquid crystal displays (LCDs), electrophoretic, and electrochromic displays, all of whose operating principles fundamentally rely on nanoscaled structures. Nanotechnology is essential to the continuing advances in integrated electronics: increasing computational power, reducing device scale, and limiting energy consumption.

BOOK CHAPTER

Iosifidis C, Katsaliaki K, Kollensperger P, Kiziroglou MEet al., 2017, Design of an embedded sensor system for measuring laser scattering on blood cells, ISSN: 0277-786X

© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. In this paper, a sensor system architecture for laboratory and in-vivo light scattering studies on blood cells is presented. It aims at correlating Mie scattering to compositional and physiological information of blood cells towards a non-invasive blood-cell counting sensor. An overview of previously reported experimental techniques on light scattering from blood cells is presented. State-of-the-art methods such as differential pulse measurements, vessel pressure optimization identified as promising for enhancing the scattering signal in such measurements. Indicative simulations of Mie scattering by blood cells are presented, illustrating the potential for distinguishing among cells and identifying size distribution. A prototype sensor system based on a 640-660 nm laser light source and a photo diode array is implemented and programmed to obtain mean amplitude and scattering angle measurements.

CONFERENCE PAPER

Kiziroglou ME, Becker T, Yeatman EM, Schmid U, Evans JW, Wright PKet al., 2017, Comparison of methods for static charge energy harvesting on aircraft, ISSN: 0277-786X

© 2017 SPIE. In this paper, the possibility of using the static charge that accumulates on aircraft during flight as a source to power monitoring sensors is examined. The assessed methods include using a pair of materials with different air-flow charging rates, contact discharging of the fuselage to neutral metallic bodies, charge motion induction by the fuselage field and inductive harvesting of fuselage-to-air corona discharges at static discharge wicks. The installation and potential advantages of each method are discussed. The feasibility of directly charging a storage capacitor from accumulated static charge is studied experimentally, demonstrating a voltage of 25V on a 25nF capacitor.

CONFERENCE PAPER

Kiziroglou ME, Boyle DE, Wright SW, Yeatman EMet al., 2017, Acoustic power delivery to pipeline monitoring wireless sensors, ULTRASONICS, Vol: 77, Pages: 54-60, ISSN: 0041-624X

JOURNAL ARTICLE

Kiziroglou ME, Boyle DE, Yeatman EM, Cilliers JJet al., 2017, Opportunities for Sensing Systems in Mining, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Vol: 13, Pages: 278-286, ISSN: 1551-3203

JOURNAL ARTICLE

Boyle DE, Kiziroglou ME, Mitcheson PD, Yeatman EMet al., 2016, Energy Provision and Storage for Pervasive Computing, IEEE PERVASIVE COMPUTING, Vol: 15, Pages: 28-35, ISSN: 1536-1268

JOURNAL ARTICLE

Kiziroglou ME, Becker T, Wright SW, Yeatman EM, Evans JW, Wright PKet al., 2016, Thermoelectric Generator Design in Dynamic Thermoelectric Energy Harvesting, 16th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

CONFERENCE PAPER

Kiziroglou ME, Elefsiniotis A, Kokorakis N, Wright SW, Toh TT, Mitcheson PD, Schmid U, Becker T, Yeatman EMet al., 2016, Scaling and super-cooling in heat storage harvesting devices, MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, Vol: 22, Pages: 1905-1914, ISSN: 0946-7076

JOURNAL ARTICLE

Becker T, Elefsiniotis A, Kiziroglou ME, 2015, TheRmoelectric Energy Harvesting in Aircraft, Micro Energy Harvesting, Pages: 415-434, ISBN: 9783527672943

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved. This chapter describes thermoelectric energy harvesting for aeronautical applications. Decentralized electrical energy generation from the environment is a key enabler for creating fully autonomous sensor systems or wireless systems in the aeronautical industry. With reference to the aviation industry, energy harvesting can potentially provide cost reduction not only for manufacturers but also for the airline companies. The chapter begins with a review of aircraft standardization, describing the aircraft environment, followed by an architectural introduction to autonomous wireless sensor nodes and their key features. It presents a recently introduced analytical and theoretical model for thermoelectric harvesting devices. Thermoelectric energy harvesting has shown great potential on different application scenarios. Depending on the environmental conditions, heat dissipation, and sensor requirements, the static or the dynamic energy harvesting approach can be applied in order to build energy autonomous sensor systems.

BOOK CHAPTER

Jiang H, Kiziroglou ME, Yates DC, Yeatman EMet al., 2015, A Motion-Powered Piezoelectric Pulse Generator for Wireless Sensing via FM Transmission, IEEE INTERNET OF THINGS JOURNAL, Vol: 2, Pages: 5-13, ISSN: 2327-4662

JOURNAL ARTICLE

Jiang H, Kiziroglou ME, Yates DC, Yeatman EMet al., 2015, A NON-HARMONIC MOTION-POWERED PIEZOELECTRIC FM WIRELESS SENSING SYSTEM, 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Publisher: IEEE, Pages: 710-713

CONFERENCE PAPER

Kiziroglou ME, Boyle DE, Wright SW, Yeatman EMet al., 2015, Acoustic energy transmission in cast iron pipelines, 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

CONFERENCE PAPER

Kiziroglou ME, Elefsiniotis A, Kokorakis N, Wright SW, Toh TT, Mitcheson PD, Schmid U, Becker T, Yeatman EMet al., 2015, Scaling of dynamic thermoelectric harvesting devices in the 1-100 cm(3) range, Conference on Smart Sensors, Actuators, and MEMS VII 1st SPIE Conference on Cyber-Physical Systems, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

CONFERENCE PAPER

Kiziroglou ME, Yeatman EM, 2015, Protection of Electronics from Environmental Temperature Spikes by Phase Change Materials, JOURNAL OF ELECTRONIC MATERIALS, Vol: 44, Pages: 4589-4594, ISSN: 0361-5235

JOURNAL ARTICLE

Jiang H, Kiziroglou ME, Yates DC, Yeatman EMet al., 2014, A Piezoelectric Pulse Generator and FM Transmission Circuit for Self-Powered BSN Nodes, 11th International Conference on Wearable and Implantable Body Sensor Networks, Publisher: IEEE, Pages: 1-5

CONFERENCE PAPER

Kiziroglou ME, Wright SW, Toh TT, Mitcheson PD, Becker T, Yeatman EMet al., 2014, Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol: 61, Pages: 302-309, ISSN: 0278-0046

JOURNAL ARTICLE

Toh TT, Wright SW, Kiziroglou ME, Mitcheson PD, Yeatman EMet al., 2014, A dual polarity, cold-starting interface circuit for heat storage energy harvesters, SENSORS AND ACTUATORS A-PHYSICAL, Vol: 211, Pages: 38-44, ISSN: 0924-4247

JOURNAL ARTICLE

Toh TT, Wright SW, Kiziroglou ME, Mitcheson PD, Yeatman EMet al., 2014, Inductive Energy Harvesting for Rotating Sensor Platforms, 14th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

CONFERENCE PAPER

Toh TT, Wright SW, Kiziroglou ME, Mueller J, Sessinghaus M, Yeatman EM, Mitcheson PDet al., 2014, Inductive energy harvesting from variable frequency and amplitude aircraft power lines, 14th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

CONFERENCE PAPER

Elefsiniotis A, Kiziroglou ME, Wright SW, Toh TT, Mitcheson PD, Becker T, Yeatman EM, Schmid Uet al., 2013, Performance evaluation of a thermoelectric energy harvesting device using various phase change materials, 13th International Conference on Micro and Nano Technology for Power Generation and Energy Conversion Applications (PowerMEMS), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

CONFERENCE PAPER

Kiziroglou ME, Elefsiniotis A, Wright SW, Toh TT, Mitcheson PD, Becker T, Yeatman EMet al., 2013, Performance of phase change materials for heat storage thermoelectric harvesting, APPLIED PHYSICS LETTERS, Vol: 103, ISSN: 0003-6951

JOURNAL ARTICLE

Toh TT, Wright SW, Kiziroglou ME, Yeatman EM, Mitcheson PDet al., 2013, Demo Abstract: Harvesting Energy from Aircraft Power Lines, 1st International Workshop on Energy Neutral Sensing Systems (ENSSys), Publisher: ASSOC COMPUTING MACHINERY

CONFERENCE PAPER

Ilioudis CV, Kiziroglou ME, 2012, LC Oscillator As An Ultra Simple, Low Power Transmitter For Wireless Sensors

JOURNAL ARTICLE

Kiziroglou ME, Wright SW, Toh TT, Becker T, Mitcheson PD, Yeatman EMet al., 2012, Heat Storage Power Supply for Wireless Aircraft Sensors, Pages: 472-475

CONFERENCE PAPER

Kiziroglou ME, Yeatman EM, 2012, Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Pages: 541-572, ISBN: 9780857090591

Energy harvesting, the collection of small amounts of ambient energy to power wireless devices, is a very promising technology for applications where batteries are impractical, such as body sensor networks and inaccessible remote systems. The performance and potential of energy-harvesting devices depend strongly on the performance and specific properties of materials. In this chapter the important properties and potential of materials used in energy-harvesting devices are reviewed. An introduction to the concept of energy harvesting is given with a special discussion on motion energy-harvesting limits. The state of the art of materials for piezoelectric, electrostatic, thermoelectric and electromagnetic harvesting devices is discussed, with emphasis on desired material properties and corresponding available materials. In addition to the materials required in the energy transduction mechanism itself, the performance of mechanical oscillators at small scales is a critical factor in motion energy harvesting. For this reason, material requirements, performance and limitations for the implementation of low-frequency and broadband mechanical oscillators are reviewed in the final section of this chapter. © 2012 Woodhead Publishing Limited All rights reserved.

BOOK CHAPTER

He C, Kiziroglou ME, Yates DC, Yeatman EMet al., 2011, A MEMS Self-Powered Sensor and RF Transmission Platform for WSN Nodes, IEEE SENSORS JOURNAL, Vol: 11, Pages: 3437-3445, ISSN: 1530-437X

JOURNAL ARTICLE

Kiziroglou ME, Samson D, Becker T, Wright SW, Yeatman EMet al., 2011, Optimization Of Heat Flow for Phase Change Thermoelectric Harvesters, Seoul, Korea, PowerMEMS, Pages: 454-457

CONFERENCE PAPER

He C, Kiziroglou ME, Yates DC, Yeatman EMet al., 2010, MEMS Energy Harvester for Wireless Biosensors, 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010), Publisher: IEEE, Pages: 172-175, ISSN: 1084-6999

CONFERENCE PAPER

Kiziroglou ME, He C, Yeatman EM, 2010, Flexible substrate electrostatic energy harvester, ELECTRONICS LETTERS, Vol: 46, Pages: 166-U93, ISSN: 0013-5194

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00504544&limit=30&person=true