Imperial College London

DrMichaelKoa-Wing

Faculty of MedicineNational Heart & Lung Institute

Honorary Clinical Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 3313 1664m.koa-wing05

 
 
//

Location

 

Cardiac Catheter Laboratory (EP)Hammersmith HospitalHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

50 results found

Mann I, Coyle C, Qureshi N, Nagy SZ, Koa-Wing M, Lim PB, Francis DP, Whinnett Z, Peters NS, Kanagaratnam P, Linton NWFet al., 2019, Evaluation of a new algorithm for tracking activation during atrial fibrillation using multipolar catheters in humans, JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Vol: 30, Pages: 1464-1474, ISSN: 1045-3873

Journal article

Qureshi N, Kim S, Cantwell C, Afonso V, Bai WJ, Ali R, Shun-Shin M, Louisa M-L, Luther V, Leong K, Lim E, Wright I, Nagy S, Hayat S, Ng FS, Koa-Wing M, Linton N, Lefroy D, Whinnett Z, Davies DW, Kanagaratnam P, Peters N, Lim PBet al., 2019, Voltage during atrial fibrillation is superior to voltage during sinus rhythm in localizing areas of delayed enhancement on magnetic resonance imaging: An assessment of the posterior left atrium in patients with persistent atrial fibrillation, Heart Rhythm, Vol: 16, Pages: 1357-1367, ISSN: 1547-5271

BackgroundBipolar electrogram voltage during sinus rhythm (VSR) has been used as a surrogate for atrial fibrosis in guiding catheter ablation of persistent AF, but the fixed rate and wavefront characteristics present during sinus rhythm may not accurately reflect underlying functional vulnerabilities responsible for AF maintenance.ObjectivesWe hypothesized that given adequate temporal sampling, the spatial distribution of mean AF voltage (VmAF) should better correlate with delayed-enhancement MRI (MRI-DE) detected atrial fibrosis than VSR.MethodsAF was mapped (8s) during index ablation for persistent AF (20 patients) using a 20-pole catheter (660±28 points/map). Following cardioversion, VSR was mapped (557±326 points/map). Electroanatomic and MRI-DE maps were co-registered in 14 patients.Results(i) The time course of VmAF was assessed from 1-40 AF-cycles (∼8s) at 1113 locations. VmAF stabilized with sampling >4s (mean voltage error=0.05mV). (ii) Paired point analysis of VmAF from segments acquired 30s apart (3,667-sites, 15-patients), showed strong correlation (r=0.95, p<0.001). (iii) Delayed-enhancement (DE) was assessed across the posterior left atrial (LA) wall, occupying 33±13%. VmAF distributions (median[IQR]) were 0.21[0.14-0.35]mV in DE vs. 0.52[0.34-0.77]mV in Non-DE regions. VSR distributions were 1.34[0.65-2.48]mV in DE vs. 2.37[1.27-3.97]mV in Non-DE. A VmAF threshold of 0.35mV yielded sensitivity/specificity 75%/79% in detecting MRI-DE, compared with 63%/67% for VSR (1.8mV threshold).ConclusionThe correlation between low-voltage and posterior LA MRI-DE is significantly improved when acquired during AF vs. sinus rhythm. With adequate sampling, mean AF voltage is a reproducible marker reflecting the functional response to the underlying persistent AF substrate.

Journal article

Shun-Shin MJ, Leong KMW, Ng FS, Linton NWF, Whinnett ZI, Koa-Wing M, Qureshi N, Lefroy DC, Harding SE, Lim PB, Peters NS, Francis DP, Varnava AM, Kanagaratnam Pet al., 2019, Ventricular conduction stability test: a method to identify and quantify changes in whole heart activation patterns during physiological stress, EP-Europace, Vol: 21, Pages: 1422-1431, ISSN: 1099-5129

AIMS: Abnormal rate adaptation of the action potential is proarrhythmic but is difficult to measure with current electro-anatomical mapping techniques. We developed a method to rapidly quantify spatial discordance in whole heart activation in response to rate cycle length changes. We test the hypothesis that patients with underlying channelopathies or history of aborted sudden cardiac death (SCD) have a reduced capacity to maintain uniform activation following exercise. METHODS AND RESULTS: Electrocardiographical imaging (ECGI) reconstructs >1200 electrograms (EGMs) over the ventricles from a single beat, providing epicardial whole heart activation maps. Thirty-one individuals [11 SCD survivors; 10 Brugada syndrome (BrS) without SCD; and 10 controls] with structurally normal hearts underwent ECGI vest recordings following exercise treadmill. For each patient, we calculated the relative change in EGM local activation times (LATs) between a baseline and post-exertion phase using custom written software. A ventricular conduction stability (V-CoS) score calculated to indicate the percentage of ventricle that showed no significant change in relative LAT (<10 ms). A lower score reflected greater conduction heterogeneity. Mean variability (standard deviation) of V-CoS score over 10 consecutive beats was small (0.9 ± 0.5%), with good inter-operator reproducibility of V-CoS scores. Sudden cardiac death survivors, compared to BrS and controls, had the lowest V-CoS scores post-exertion (P = 0.011) but were no different at baseline (P = 0.50). CONCLUSION: We present a method to rapidly quantify changes in global activation which provides a measure of conduction heterogeneity and proof of concept by demonstrating SCD survivors have a reduced capacity to maintain uniform activation following exercise.

Journal article

Luther V, Agarwal S, Chow A, Koa-Wing M, Cortez-Dias N, Carpinteiro L, de Sousa J, Balasubramaniam R, Farwell D, Jamil-Copley S, Srinivasan N, Abbas H, Mason J, Jones N, Katritsis G, Lim PB, Peters NS, Qureshi N, Whinnett Z, Linton NWF, Kanagaratnam Pet al., 2019, Ripple-AT study: A multicenter and randomized study comparing 3d mapping techniques during atrial tachycardia ablations, Circulation: Arrhythmia and Electrophysiology, Vol: 12, Pages: 1-13, ISSN: 1941-3084

BACKGROUND: Ripple mapping (RM) is an alternative approach to activation mapping of atrial tachycardia (AT) that avoids electrogram annotation. We tested whether RM is superior to conventional annotation based local activation time (LAT) mapping for AT diagnosis in a randomized and multicenter study. METHODS: Patients with AT were randomized to either RM or LAT mapping using the CARTO3v4 CONFIDENSE system. Operators determined the diagnosis using the assigned 3D mapping arm alone, before being permitted a single confirmatory entrainment manuever if needed. A planned ablation lesion set was defined. The primary end point was AT termination with delivery of the planned ablation lesion set. The inability to terminate AT with this first lesion set, the use of more than one entrainment manuever, or the need to crossover to the other mapping arm was defined as failure to achieve the primary end point. RESULTS: One hundred five patients from 7 centers were recruited with 22 patients excluded due to premature AT termination, noninducibility or left atrial appendage thrombus. Eighty-three patients (pts; RM=42, LAT=41) completed mapping and ablation within the 2 groups of similar characteristics (RM versus LAT: prior ablation or cardiac surgery n=35 [83%] versus n=35 [85%], P=0.80). The primary end point occurred in 38/42 pts (90%) in the RM group and 29/41pts (71%) in the LAT group (P=0.045). This was achieved without any entrainment in 31/42 pts (74%) with RM and 18/41 pts (44%) with LAT (P=0.01). Of those patients who failed to achieve the primary end point, AT termination was achieved in 9/12 pts (75%) in the LAT group following crossover to RM with entrainment, but 0/4 pts (0%) in the RM group crossing over to LAT mapping with entrainment (P=0.04). CONCLUSIONS: RM is superior to LAT mapping on the CARTO3v4 CONFIDENSE system in guiding ablation to terminate AT with the first lesion set and with reduced entrainment to assist diagnosis. CLINICAL TRIALS REGISTRATION: https:/

Journal article

Keene D, Shun-Shin M, Arnold A, Howard J, Lefroy D, Davies W, Lim PB, Ng FS, Koa-Wing M, Qureshi N, Linton N, Shah J, Peters N, Kanagaratnam P, Francis D, Whinnett Zet al., 2019, Quantification of Electromechanical Coupling to Prevent Inappropriate Implantable Cardioverter-Defibrillator Shocks, JACC: Clinical Electrophysiology, Vol: 5, Pages: 705-715, ISSN: 2405-500X

Objective To test specialised processing of laser Doppler signals for discriminating ventricular fibrillation(VF) from common causes of inappropriate therapies.BackgroundInappropriate ICD therapies remain a clinically important problem associated with morbidity and mortality.Tissue perfusion biomarkers, to assist automated diagnosis of VF, suffer the vulnerability of sometimes mistaking artefact and random noise for perfusion, which could lead to shocks being inappropriately withheld. MethodsWe developed a novel processing algorithm that combines electrogram data and laser Doppler perfusion monitoring, as a method for assessing circulatory status. We recruited 50 patients undergoing VF induction during ICD implantation. We recorded non-invasive laser Doppler and continuous electrograms, during both sinus-rhythm and VF. For each patient we simulated two additional scenarios that may lead to inappropriate shocks: ventricular-lead fracture and T-wave oversensing. We analysed the laser Doppler using three methods for reducing noise: (i)Running Mean, (ii)Oscillatory Height, (iii)a novel quantification of Electro-Mechanical coupling which gates laser Doppler against electrograms. We additionally tested the algorithm during exercise induced sinus tachycardia.ResultsOnly the Electro-mechanical coupling algorithm found a clear perfusion cut-off between sinus rhythm and VF (sensitivity and specificity 100%). Sensitivity and specificity remained 100% during simulated lead fracture and electrogram oversensing. (AUC: Running Mean 0.91, Oscillatory Height 0.86, Electro-Mechanical Coupling 1.00). Sinus tachycardia did not cause false positives.ConclusionsQuantifying the coupling between electrical and perfusion signals increases reliability of discrimination between VF and artefacts that ICDs may interpret as VF. Incorporating such methods into future ICDs may safely permit reductions of inappropriate shocks.

Journal article

Leong KMW, Ng FS, Jones S, Chow J-J, Qureshi N, Koa-Wing M, Linton NWF, Whinnett ZI, Lefroy DC, Davies DW, Lim PB, Peters NS, Kanagaratnam P, Varnava AMet al., 2019, Prevalence of spontaneous type I ECG pattern, syncope, and other risk markers in sudden cardiac arrest survivors with Brugada syndrome, PACE - Pacing and Clinical Electrophysiology, Vol: 42, Pages: 257-264, ISSN: 0147-8389

IntroductionA spontaneous type I electrocardiogram (ECG) pattern and/or unheralded syncope are conventionally used as risk markers for primary prevention of sudden cardiac arrest/death (SCA/SCD) in Brugada syndrome (BrS). In this study, we determine the prevalence of conventional and newer markers of risk in those with and without previous aborted SCA events.MethodsAll patients with BrS were identified at our institute. History of symptoms was obtained from medical tests or from interviews. Other markers of risk were also obtained, such as presence of (1) spontaneous type I pattern, (2) fractionated QRS (fQRS), (3) early repolarization (ER) pattern, (4) late potentials on signal‐averaged ECG (SAECG), and (5) response to programmed electrical stimulation.ResultsIn 133 patients with Bars, 10 (7%) patients (mean age = 39 ± 11 years; nine males) were identified with a previous ventricular fibrillation/ventricular tachycardia episode (n = 8) or requiring cardio‐pulmonary resuscitation (n = 2). None of these patients had a prior history of syncope before their SCA event. Only two (20%) patients reported a history of palpitations or dizziness. None had apneic breathing and three (30%) patients had a family history of SCA. From their ECGs, a spontaneous pattern was only found in one (10%) of these patients. Further, 10% of patients had fQRS, 17% had late potentials on SAECG, 20% had deep S waves in lead I, and 10% had an ER pattern in the peripheral leads. No significant differences were observed in the non‐SCA group.ConclusionThe majority of BrS patients with previous aborted SCA events did not have a spontaneous type I and/or prior history of syncope. Conventional and newer markers of risk appear to only have limited ability to predict SCA.

Journal article

Arnold A, Shun-Shin M, Keene D, Howard J, Sohaib S, wright I, Cole G, Qureshi N, lefroy D, Koa-Wing M, Linton N, Lim P, Peters N, Davies D, muthumala A, Tanner M, ellenbogen K, Kanagaratnam P, Francis D, Whinnett Zet al., 2018, His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block, Journal of the American College of Cardiology, Vol: 72, Pages: 3112-3122, ISSN: 0735-1097

Background His bundle pacing is a new method for delivering cardiac resynchronization therapy (CRT).Objectives The authors performed a head-to-head, high-precision, acute crossover comparison between His bundle pacing and conventional biventricular CRT, measuring effects on ventricular activation and acute hemodynamic function.Methods Patients with heart failure and left bundle branch block referred for conventional biventricular CRT were recruited. Using noninvasive epicardial electrocardiographic imaging, the authors identified patients in whom His bundle pacing shortened left ventricular activation time. In these patients, the authors compared the hemodynamic effects of His bundle pacing against biventricular pacing using a high-multiple repeated alternation protocol to minimize the effect of noise, as well as comparing effects on ventricular activation.Results In 18 of 23 patients, left ventricular activation time was significantly shortened by His bundle pacing. Seventeen patients had a complete electromechanical dataset. In them, His bundle pacing was more effective at delivering ventricular resynchronization than biventricular pacing: greater reduction in QRS duration (−18.6 ms; 95% confidence interval [CI]: −31.6 to −5.7 ms; p = 0.007), left ventricular activation time (−26 ms; 95% CI: −41 to −21 ms; p = 0.002), and left ventricular dyssynchrony index (−11.2 ms; 95% CI: −16.8 to −5.6 ms; p < 0.001). His bundle pacing also produced a greater acute hemodynamic response (4.6 mm Hg; 95% CI: 0.2 to 9.1 mm Hg; p = 0.04). The incremental activation time reduction with His bundle pacing over biventricular pacing correlated with the incremental hemodynamic improvement with His bundle pacing over biventricular pacing (R = 0.70; p = 0.04).Conclusions His resynchronization delivers better ventricular resynchronization, and greater improvement in hemodynamic parameters, than biventricular pacing.

Journal article

Arnold AD, Shun-Shin MJ, Keene D, Howard J, Lefroy DC, Davies DW, Lim PH, Kanagaratnam P, Koa-Wing M, Wright IJ, Qureshi NA, Tanner MA, Muthumala AG, Linton N, Peters NS, Francis DP, Whinnett ZIet al., 2018, His bundle pacing can overcome left bundle branch block to produce greater improvements in acute haemodynamic function and ventricular activation than biventricular pacing, Heart Rhythm Society Scientific Sessions, Publisher: Elsevier, Pages: S40-S41, ISSN: 1547-5271

Conference paper

Luther V, Qureshi N, Lim PB, Koa-Wing M, Jamil-Copley S, Ng FS, Whinnett Z, Davies DW, Peters NS, Kanagaratnam P, Linton Net al., 2018, Isthmus sites identified by Ripple Mapping are usually anatomically stable: A novel method to guide atrial substrate ablation?, Journal of Cardiovascular Electrophysiology, Vol: 29, Pages: 404-411, ISSN: 1045-3873

BACKGROUND: Postablation reentrant ATs depend upon conducting isthmuses bordered by scar. Bipolar voltage maps highlight scar as sites of low voltage, but the voltage amplitude of an electrogram depends upon the myocardial activation sequence. Furthermore, a voltage threshold that defines atrial scar is unknown. We used Ripple Mapping (RM) to test whether these isthmuses were anatomically fixed between different activation vectors and atrial rates. METHODS: We studied post-AF ablation ATs where >1 rhythm was mapped. Multipolar catheters were used with CARTO Confidense for high-density mapping. RM visualized the pattern of activation, and the voltage threshold below which no activation was seen. Isthmuses were characterized at this threshold between maps for each patient. RESULTS: Ten patients were studied (Map 1 was AT1; Map 2: sinus 1/10, LA paced 2/10, AT2 with reverse CS activation 3/10; AT2 CL difference 50 ± 30 ms). Point density was similar between maps (Map 1: 2,589 ± 1,330; Map 2: 2,214 ± 1,384; P  =  0.31). RM activation threshold was 0.16 ± 0.08 mV. Thirty-one isthmuses were identified in Map 1 (median 3 per map; width 27 ± 15 mm; 7 anterior; 6 roof; 8 mitral; 9 septal; 1 posterior). Importantly, 7 of 31 (23%) isthmuses were unexpectedly identified within regions without prior ablation. AT1 was treated following ablation of 11/31 (35%) isthmuses. Of the remaining 20 isthmuses, 14 of 16 isthmuses (88%) were consistent between the two maps (four were inadequately mapped). Wavefront collision caused variation in low voltage distribution in 2 of 16 (12%). CONCLUSIONS: The distribution of isthmuses and nonconducting tissue within the ablated left atrium, as defined by RM, appear concordant between rhythms. This could guide a substrate ablative approach.

Journal article

Leong KMW, chow J-J, Ng FS, Falaschetti E, Qureshi N, Koa-Wing M, Linton N, Whinnett Z, Lefroy D, Davies DW, Lim PB, Peters N, Kanagaratnam P, Varnava Aet al., 2017, Comparison of the Prognostic Usefulness of the European Society of Cardiology and American Heart Association/American College of Cardiology Foundation Risk Stratification Systems for Patients With Hypertrophic Cardiomyopathy, American Journal of Cardiology, Vol: 121, Pages: 349-355, ISSN: 0002-9149

Implantable cardio-defibrillators (ICDs) have proven benefit in preventing sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC), making risk stratification essential. Data on the predictive accuracy on the European Society of Cardiology (ESC) risk scoring system has been conflicting. We independently evaluated the ESC risk scoring system in our cohort of HC patients from a large tertiary centre and compared this to previous guidance by the American College of Cardiology Foundation and Heart Association (ACCF/AHA). Risk factor profiles, 5-year SCD risk estimates and ICD recommendations as defined by the ACCF/AHA and ESC guidelines, were retrospectively ascertained for 288 HC patients with and without SCD or equivalent events at our centre. In the SCD group (n=14), a significantly higher proportion of patients would not have met the criteria for an ICD implant using the ESC scoring algorithm than ACCF/AHA guidance (43%vs7%, p=0.029). In those without SCD events (n=274), a larger proportion of individuals not requiring an ICD was identified using the ESC risk score model compared to the ACCF/AHA model (82%vs57%; p<0.0001). Based on risk stratification criteria alone, 5 more individuals with a previously aborted SCD event would not have received an ICD with the ESC risk model than the ACCF/AHA risk model. In conclusion, we found that the current ESC scoring system potentially leaves more high-risk patients unprotected from sudden death in our cohort of patients.

Journal article

Sau A, Sikkel MB, Luther V, Wright I, Guerrero F, Koa-Wing M, Lefroy D, Linton N, Qureshi N, Whinnett Z, Lim PB, Kanagaratnam P, Peters NS, Davies DWet al., 2017, The sawtooth EKG pattern of typical atrial flutter is not related to slow conduction velocity at the cavotricuspid isthmus., Journal of Cardiovascular Electrophysiology, Vol: 28, Pages: 1445-1453, ISSN: 1045-3873

INTRODUCTION: We hypothesized that very high density mapping of typical atrial flutter (AFL) would facilitate a more complete understanding of its circuit. Such very high density mapping was performed with the Rhythmia mapping system using its 64 electrode basket catheter. METHODS AND RESULTS: Data were acquired from 13 patients in AFL. Functional anatomy of the right atrium (RA) was readily identified during mapping including the Crista Terminalis and Eustachian ridge. The leading edge of the activation wavefront was identified without interruption and its conduction velocity (CV) calculated. CV was not different at the cavotricuspid isthmus (CTI) compared to the remainder of the RA (1.02 vs. 1.03 m/s, p = 0.93). The sawtooth pattern of the surface EKG flutter waves were compared to the position of the dominant wavefront. The downslope of the surface EKG flutter waves represented on average, 73% ± 9% of the total flutter cycle length. During the downslope the activation wavefront travelled significantly further than during the upslope (182 ± 21 ms vs. 68 ± 29 ms, p < 0.0001) with no change in conduction velocity between the two phases (0.88 vs. 0.91 m/s, p = 0.79). CONCLUSION: CV at the CTI is not slower than other RA regions during typical AFL. The gradual downslope of the sawtooth EKG is not due to slow conduction at the CTI suggesting that success of ablation at this site relates to anatomical properties rather than presence of a "slow isthmus". This article is protected by copyright. All rights reserved.

Journal article

Luther V, Sikkel M, Bennett N, Guerrero F, Leong K, Qureshi N, Ng FS, Hayat SA, Sohaib SMA, Malcolme-Lawes L, Lim E, Wright I, Koa-Wing M, Lefroy DC, Linton NWF, Whinnett Z, Kanagaratnam P, Davies W, Peters NS, Lim PBet al., 2017, Visualizing Localized Reentry With Ultra-High Density Mapping in Iatrogenic Atrial Tachycardia Beware Pseudo-Reentry, CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, Vol: 10, ISSN: 1941-3149

Background—The activation pattern of localized reentry (LR) in atrial tachycardia remains incompletely understood. We used the ultra–high density Rhythmia mapping system to study activation patterns in LR.Methods and Results—LR was suggested by small rotatory activations (carousels) containing the full spectrum of the color-coded map. Twenty-three left-sided atrial tachycardias were mapped in 15 patients (age: 64±11 years). 16 253±9192 points were displayed per map, collected over 26±14 minutes. A total of 50 carousels were identified (median 2; quartiles 1–3 per map), although this represented LR in only n=7 out of 50 (14%): here, rotation occurred around a small area of scar (<0.03 mV; 12±6 mm diameter). In LR, electrograms along the carousel encompassed the full tachycardia cycle length, and surrounding activation moved away from the carousel in all directions. Ablating fractionated electrograms (117±18 ms; 44±13% of tachycardia cycle length) within the carousel interrupted the tachycardia in every LR case. All remaining carousels were pseudo-reentrant (n=43/50 [86%]) occurring in areas of wavefront collision (n=21; median 0.5; quartiles 0–2 per map) or as artifact because of annotation of noise or interpolation in areas of incomplete mapping (n=22; median 1, quartiles 0–2 per map). Pseudo-reentrant carousels were incorrectly ablated in 5 cases having been misinterpreted as LR.Conclusions—The activation pattern of LR is of small stable rotational activations (carousels), and this drove 30% (7/23) of our postablation atrial tachycardias. However, this appearance is most often pseudo-reentrant and must be differentiated by interpretation of electrograms in the candidate circuit and activation in the wider surrounding region.

Journal article

Betts TR, Leo M, Panikker S, Kanagaratnam P, Koa-Wing M, Davies DW, Hildick-Smith D, Wynne DG, Ormerod O, Segal OR, Chow AW, Todd D, Gomez SC, Kirkwood GJ, Fox D, Pepper C, Foran J, Wong Tet al., 2017, Percutaneous Left Atrial Appendage Occlusion Using Different Technologies in the United Kingdom: A Multicenter Registry, CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, Vol: 89, Pages: 484-492, ISSN: 1522-1946

Journal article

Luther V, Linton NW, Jamil-Copley S, Koa-Wing M, Lim PB, Qureshi N, Ng FS, Hayat S, Whinnett Z, Davies DW, Peters NS, Kanagaratnam Pet al., 2016, A prospective study of ripple mapping the post-infarct ventricular scar to guide substrate ablation for ventricular tachycardia, Circulation: Arrhythmia and Electrophysiology, Vol: 9, Pages: 1-12, ISSN: 1941-3084

BACKGROUND: Post-infarct ventricular tachycardia is associated with channels of surviving myocardium within scar characterized by fractionated and low-amplitude signals usually occurring late during sinus rhythm. Conventional automated algorithms for 3-dimensional electro-anatomic mapping cannot differentiate the delayed local signal of conduction within the scar from the initial far-field signal generated by surrounding healthy tissue. Ripple mapping displays every deflection of an electrogram, thereby providing fully informative activation sequences. We prospectively used CARTO-based ripple maps to identify conducting channels as a target for ablation. METHODS AND RESULTS: High-density bipolar left ventricular endocardial electrograms were collected using CARTO3v4 in sinus rhythm or ventricular pacing and reviewed for ripple mapping conducting channel identification. Fifteen consecutive patients (median age 68 years, left ventricular ejection fraction 30%) were studied (6 month preprocedural implantable cardioverter defibrillator therapies: median 19 ATP events [Q1-Q3=4-93] and 1 shock [Q1-Q3=0-3]). Scar (<1.5 mV) occupied a median 29% of the total surface area (median 540 points collected within scar). A median of 2 ripple mapping conducting channels were seen within each scar (length 60 mm; initial component 0.44 mV; delayed component 0.20 mV; conduction 55 cm/s). Ablation was performed along all identified ripple mapping conducting channels (median 18 lesions) and any presumed interconnected late-activating sites (median 6 lesions; Q1-Q3=2-12). The diastolic isthmus in ventricular tachycardia was mapped in 3 patients and colocated within the ripple mapping conducting channels identified. Ventricular tachycardia was noninducible in 85% of patients post ablation, and 71% remain free of ventricular tachycardia recurrence at 6-month median follow-up. CONCLUSIONS: Ripple mapping can be used to identify conduction channels within scar to guide functional substrate

Journal article

Leong KMW, Chow J-J, Ng FS, Yates S, Wright I, Luther V, David L, Qureshi N, Koa-Wing M, Whinnett Z, Linton NW, Davies DW, Lim PB, Peters NS, Kanagaratnam P, Varnava Aet al., 2016, Risk Stratification in Hypertrophic Cardiomyopathy: Evaluation of the European Society of Cardiology Sudden Cardiac Death Risk Scoring System, Annual Conference of the British Cardiovascular Society (BCS) on Prediction and Prevention, Publisher: BMJ Publishing Group, Pages: A104-A105, ISSN: 1355-6037

Conference paper

Luther V, Linton NW, Jamil-Copley S, Koa-Wing M, Qureshi N, Ng F, Lim PB, Whinnett Z, Davies DW, Peters NS, Kanagaratnam Pet al., 2016, RIPPLE MAPPING THE VENTRICULAR SCAR: A NOVEL APPROACH TO SUBSTRATE ABLATION OF POST-INFARCT VENTRICULAR TACHYCARDIA TO PREVENT IMPLANTABLE DEFIBRILLATOR THERAPY, Annual Conference of the British-Cardiovascular-Society (BCS) on Prediction and Prevention, Publisher: BMJ PUBLISHING GROUP, Pages: A49-A50, ISSN: 1355-6037

Conference paper

Luther V, Linton NW, Koa-Wing M, Lim PB, Jamil-Copley S, Qureshi N, Ng FS, Hayat S, Whinnett Z, Davies DW, Peters NS, Kanagaratnam Pet al., 2016, A prospective study of ripple mapping in atrial tachycardias: a novel approach to interpreting activation in low-voltage areas, Circulation: Arrhythmia and Electrophysiology, Vol: 9, Pages: 1-13, ISSN: 1941-3084

BACKGROUND: Post ablation atrial tachycardias are characterized by low-voltage signals that challenge current mapping methods. Ripple mapping (RM) displays every electrogram deflection as a bar moving from the cardiac surface, resulting in the impression of propagating wavefronts when a series of bars move consecutively. RM displays fractionated signals in their entirety thereby helping to identify propagating activation in low-voltage areas from nonconducting tissue. We prospectively used RM to study tachycardia activation in the previously ablated left atrium.METHODS AND RESULTS: Patients referred for atrial tachycardia ablation underwent dense electroanatomic point collection using CARTO3v4. RM was played over a bipolar voltage map and used to determine the voltage "activation threshold" that differentiated functional low voltage from nonconducting areas for each map. Ablation was guided by RM, but operators could perform entrainment or review the isochronal activation map for diagnostic uncertainty. Twenty patients were studied. Median RM determined activation threshold was 0.3 mV (0.19-0.33), with nonconducting tissue covering 33±9% of the mapped surface. All tachycardias crossed an isthmus (median, 0.52 mV, 13 mm) bordered by nonconducting tissue (70%) or had a breakout source (median, 0.35 mV) moving away from nonconducting tissue (30%). In reentrant circuits (14/20) the path length was measured (87-202 mm), with 9 of 14 also supporting a bystander circuit (path lengths, 147-234 mm). In breakout tachycardias, splitting of wavefronts resulted in 2 to 4 incomplete circuits. RM-guided ablation interrupted the tachycardia in 19 of 20 cases with the first ablation set. CONCLUSIONS: RM helps to define activation through low-voltage regions and aids ablation of atrial tachycardias.

Journal article

Koa-Wing M, Nakagawa H, Luther V, Jamil-Copley S, Linton N, Sandler B, Qureshi N, Peters NS, Davies DW, Francis DP, Jackman W, Kanagaratnam Pet al., 2015, A diagnostic algorithm to optimize data collection and interpretation of Ripple Maps in atrial tachycardias, International Journal of Cardiology, Vol: 199, Pages: 391-400, ISSN: 1874-1754

BackgroundRipple Mapping (RM) is designed to overcome the limitations of existing isochronal 3D mapping systems by representing the intracardiac electrogram as a dynamic bar on a surface bipolar voltage map that changes in height according to the electrogram voltage–time relationship, relative to a fiduciary point.ObjectiveWe tested the hypothesis that standard approaches to atrial tachycardia CARTO™ activation maps were inadequate for RM creation and interpretation. From the results, we aimed to develop an algorithm to optimize RMs for future prospective testing on a clinical RM platform.MethodsCARTO-XP™ activation maps from atrial tachycardia ablations were reviewed by two blinded assessors on an off-line RM workstation. Ripple Maps were graded according to a diagnostic confidence scale (Grade I — high confidence with clear pattern of activation through to Grade IV — non-diagnostic). The RM-based diagnoses were corroborated against the clinical diagnoses.Results43 RMs from 14 patients were classified as Grade I (5 [11.5%]); Grade II (17 [39.5%]); Grade III (9 [21%]) and Grade IV (12 [28%]). Causes of low gradings/errors included the following: insufficient chamber point density; window-of-interest < 100% of cycle length (CL); < 95% tachycardia CL mapped; variability of CL and/or unstable fiducial reference marker; and suboptimal bar height and scar settings.ConclusionsA data collection and map interpretation algorithm has been developed to optimize Ripple Maps in atrial tachycardias. This algorithm requires prospective testing on a real-time clinical platform.

Journal article

Luther V, Jamil-Copley S, Koa-Wing M, Shun-Shin M, Hayat S, Linton NW, Lim PB, Whinnett Z, Wright IJ, Lefroy D, Peters NS, Davies DW, Kanagaratnam Pet al., 2015, Non-randomised comparison of acute and long-term outcomes of robotic versus manual ventricular tachycardia ablation in a single centre ischemic cohort., Journal of Interventional Cardiac Electrophysiology, Vol: 43, Pages: 175-185, ISSN: 1572-8595

INTRODUCTION: Robotically guided radiofrequency (RF) ablation offers greater catheter stability that may improve lesion depth. We performed a non-randomised comparison of patients undergoing ventricular tachycardia (VT) ablation either manually or robotically using the Hansen Sensei system for recurrent implantable defibrillator (ICD) therapy. METHODS: Patients with infarct-related scar underwent VT ablation using the Hansen system to assess feasibility compared with patients undergoing manual VT ablation during a similar time period. Power delivery during robotic ablation was restricted to 30 W at 60 s. VT inducibility was checked at the end of the procedure. Pre-ablation ICD therapy burdens over 6 months were compared with post-ablation therapy averaged to a 6-month period. RESULTS: Twelve consecutive patients who underwent robotic VT ablation were compared to 12 consecutive patients undergoing a manual ablation. Patient demographics and comorbidities were similar in the two groups. A higher proportion of robotic cases were urgent (9/12 (75 %)) vs. manual (4/12 (33 %)) (p = 0.1). Post-ablation VT stimulation did not induce clinical VT in 11/12 (92 %) in each group. There were no peri-procedural complications related to ablation delivery. Patients were followed up for approximately 2 years. Averaged over 6 months, robotic ICD therapy burdens fell from 32 (5-400) events to 2.5 (0-11) (p = 0.015). Therapy burden fell from 14 (10-25) to 1 (0-5) (p = 0.023) in the manual group. There was no difference in long-term outcome (p = 0.60) and mortality (4/12 (33 %), p = 1.0). CONCLUSION: Robotically guided VT ablation is both feasible and safe when compared to manual ablation with good acute and long-term outcomes.

Journal article

Jamil-Copley S, Vergara P, Carbucicchio C, Linton N, Koa-Wing M, Luther V, Francis DP, Peters NS, Davies DW, Tondo C, Della Bella P, Kanagaratnam Pet al., 2015, Application of Ripple Mapping to Visualize Slow Conduction Channels Within the Infarct-Related Left Ventricular Scar, CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, Vol: 8, Pages: 76-U110, ISSN: 1941-3149

Journal article

Koa-Wing M, Jamil-Copley S, Ariff B, Kojodjojo P, Lim PB, Whinnett Z, Rajakulendran S, Malhotra P, Lefroy D, Peters NS, Davies DW, Kanagaratnam Pet al., 2014, Haemorrhagic cerebral air embolism from an atrio-oesophageal fistula following atrial fibrillation ablation., Perfusion, Vol: 30, Pages: 484-486, ISSN: 0935-0020

We report the case of a man found unconscious three weeks following atrial fibrillation (AF) ablation. Cranial and thoracic imaging demonstrated multiple areas of pneumo-embolic infarction secondary to an atrio-oesophageal fistula (AEF). AEF is a recognised, but rare, complication of AF ablation.(1-8) Early recognition is critical as the mortality is 100% without surgical intervention. We consider the postulated mechanisms of AEF formation, the spectrum of clinical presentation, investigations and treatment.

Journal article

Jamil-Copley SJ, Linton NL, Koa-Wing MK, Vergara PV, Carbucicchio CC, Whinnett ZW, Lim PB, Davies DW, Peters NS, Tondo CT, Della Bella PD, Kanagaratnam PKet al., 2014, 3Development of a novel mapping system to visualise activation in ventricular scar., Europace, Vol: 16 Suppl 3

Ventricular scar is characterised by fractionated electrograms (egm) and not well displayed by current 3D mapping systems. We hypothesised that displaying intracardiac egms on 3D geometry as dynamic bars changing height according to the voltage-time relationship relative to a fiduciary egm, would enable visualisation slow conduction channels (SCC) in the infarct scar.

Journal article

Luther V, Jamil-Copley S, Shun-Shin M, Koa-Wing M, Wright I, Hayat S, Linton N, Lim PB, Lefroy D, Whinnett Z, Davies DW, Peters NS, Kanagaratnam Pet al., 2014, 24Acute and long-term outcomes for patients undergoing radiofrequency catheter ablation of scar-related ventricular tachycardia by robotic catheter navigation., Europace, Vol: 16 Suppl 3

Robotically-guided ablation offers theoretical advantages with greater catheter stability that can improve lesion depth. We performed a non-randomised comparison of patients undergoing ventricular tachycardia (VT) ablation either manually or using the Hansen robotic system.

Journal article

Jamil-Copley S, Bokan R, Kojodjojo P, Qureshi N, Koa-Wing M, Hayat S, Kyriacou A, Sandler B, Sohaib A, Wright I, Davies DW, Whinnett Z, Peters NS, Kanagaratnam P, Lim PBet al., 2014, Noninvasive electrocardiographic mapping to guide ablation of outflow tract ventricular arrhythmias, HEART RHYTHM, Vol: 11, Pages: 587-594, ISSN: 1547-5271

Journal article

Jamil-Copley S, Linton N, Koa-Wing M, Kojodjojo P, Lim PB, Malcolme-Lawes L, Whinnett Z, Wright I, Davies W, Peters N, Francis DP, Kanagaratnam Pet al., 2013, Application of Ripple Mapping with an Electroanatomic Mapping System for Diagnosis of Atrial Tachycardias, JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Vol: 24, Pages: 1361-1369, ISSN: 1045-3873

Journal article

Malcolme-Lawes LC, Lim PB, Wright I, Kojodjojo P, Koa-Wing M, Jamil-Copley S, Dehbi H-M, Francis DP, Davies DW, Peters NS, Kanagaratnam Pet al., 2013, Characterization of the Left Atrial Neural Network and its Impact on Autonomic Modification Procedures, CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, Vol: 6, Pages: 632-640, ISSN: 1941-3149

Journal article

Barakat MF, Chehab O, Hayat S, Kelshiker M, Turner H, Norrington K, Konstantinou K, Whinnett Z, Koa-Wing M, Manisty C, Wright I, Jamil-Copley S, Lim B, Sutaria N, Nihoyannopoulos P, Lefroy D, Mayet J, Francis DP, Davies DW, Peters N, Kanagaratnam P, Okonko DOet al., 2013, ATTENUATIONS IN TISSUE DOPPLER-DERIVED LEFT VENTRICULAR SYSTOLIC VELOCITY PREDICT AN AMPLIFIED RISK OF LETHAL ARRHYTHMIAS IN ICD RECIPIENTS INDEPENDENTLY OF EJECTION FRACTION, 62nd Annual Scientific Session of the American-College-of-Cardiology, Publisher: ELSEVIER SCIENCE INC, Pages: E818-E818, ISSN: 0735-1097

Conference paper

Grapsa J, Koa-Wing M, Fox KF, 2013, Fiddling with the pacemaker: Twiddler's syndrome in a parkinsonian patient, PERFUSION-UK, Vol: 28, Pages: 31-33, ISSN: 0267-6591

Journal article

Malcolme-Lawes LC, Lim PB, Koa-Wing M, Whinnett ZI, Jamil-Copley S, Hayat S, Francis DP, Kojodjojo P, Davies DW, Peters NS, Kanagaratnam Pet al., 2013, Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation, EUROPACE, Vol: 15, Pages: 41-47, ISSN: 1099-5129

Journal article

Norrington KD, Turner HK, Barakat MF, Konstantinou K, Kelshikir M, O'Driscoll S, Screeche-Powelll C, Chilcott J, Hayat S, Koa-Wing M, Graspa J, Nihovannopoulos P, Manisty C, Fox K, Connolly S, Chapman N, Sutaria N, Kanagaratnam P, Mayet J, Francis DP, Okonko DOet al., 2012, Prognostic Utility of the Hemoglobin/Hematocrit Equation for Estimating Plasma Volume Changes During Hospitalization for Acute Decompensated Heart Failure, CIRCULATION, Vol: 126, ISSN: 0009-7322

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00447911&limit=30&person=true&page=1&respub-action=search.html