## Publications

140 results found

Burness T, Liebeck M, Shalev A, 2019, On the length and depth of finite groups, *Proceedings of the London Mathematical Society*, Vol: 119, Pages: 1464-1492, ISSN: 1460-244X

An unrefinable chain of a finite group is a chain of subgroups = 0> 1>⋯> =1 , where each is a maximal subgroup of −1 . The length (respectively, depth) of is the maximal (respectively, minimal) length of such a chain. We studied the depth of finite simple groups in a previous paper, which included a classification of the simple groups of depth 3. Here, we go much further by determining the finite groups of depth 3 and 4. We also obtain several new results on the lengths of finite groups. For example, we classify the simple groups of length at most 9, which extends earlier work of Janko and Harada from the 1960s, and we use this to describe the structure of arbitrary finite groups of small length. We also present a number‐theoretic result of Heath‐Brown, which implies that there are infinitely many non‐abelian simple groups of length at most 9.Finally, we study the chain difference of (namely the length minus the depth). We obtain results on groups with chain differences 1 and 2, including a complete classification of the simple groups with chain difference 2, extending earlier work of Brewster et al. We also derive a best possible lower bound on the chain ratio (the length divided by the depth) of simple groups, which yields an explicit linear bound on the length of / ( ) in terms of the chain difference of , where ( ) is the soluble radical of .

Liebeck M, Tiep PH, Character ratios for exceptional groups of Lie type, *International Mathematics Research Notices*, ISSN: 1073-7928

Bridson M, Evans D, Liebeck M,
et al., 2019, Algorithms determining finite simple images of finitely presented groups, *Inventiones Mathematicae*, ISSN: 0020-9910

We address the question: for which collections of finite simple groups does there exist an algorithm that determines the images of an arbitrary finitely presented group that lie in the collection? We prove both positive and negative results. For a collection of finite simple groups that contains infinitely many alternating groups, or contains classical groups of unbounded dimensions, we prove that there is no such algorithm. On the other hand, for families of simple groups of Lie type of bounded rank, we obtain positive results. For example, for any fixed untwisted Lie type X there is an algorithm that determines whether or not any given finitely presented group has simple images of the form X(q) for infinitely many q, and if there are finitely many, the algorithm determines them.

Burness TC, Liebeck MW, Shalev A, 2019, The length and depth of compact Lie groups, *Mathematische Zeitschrift*, ISSN: 0025-5874

Let G be a connected Lie group. An unrefinable chain of G is defined to be a chain of subgroups G=G0>G1>⋯>Gt=1 , where each Gi is a maximal connected subgroup of Gi−1 . In this paper, we introduce the notion of the length (respectively, depth) of G, defined as the maximal (respectively, minimal) length of such a chain, and we establish several new results for compact groups. In particular, we compute the exact length and depth of every compact simple Lie group, and draw conclusions for arbitrary connected compact Lie groups G. We obtain best possible bounds on the length of G in terms of its dimension, and characterize the connected compact Lie groups that have equal length and depth. The latter result generalizes a well known theorem of Iwasawa for finite groups. More generally, we establish a best possible upper bound on dimG′ in terms of the chain difference of G, which is its length minus its depth.

Liebeck M, Shalev A, Girth, words and diameter, *Bulletin of the London Mathematical Society*, ISSN: 0024-6093

We study the girth of Cayley graphs of finite classical groups G on random sets of generators. Our main tool is an essentially best possible bound we obtain on the probability that a given word w takes the value 1 when evaluated in G in terms of the length of w, which has additional applications. We also study the girth of random directed Cayley graphs of symmetric groups, and the relation between the girth and the diameter of random Cayley graphs of finite simple groups.

Benkart G, Diaconis P, Liebeck M,
et al., Tensor product Markov chains, *Journal of Algebra*, ISSN: 0021-8693

We analyze families of Markov chains that arise from decomposing ten-sor products of irreducible representations. This illuminates the Burnside-Brauer Theorem for building irreducible representations, the McKay Corre-spondence, and Pitman’s2M−XTheorem. The chains are explicitly di-agonalizable, and we use the eigenvalues/eigenvectors to give sharp rates ofconvergence for the associated random walks. For modular representations,the chains are not reversible, and the analytical details are surprisingly intri-cate. In the quantum group case, the chains fail to be diagonalizable, but anovel analysis using generalized eigenvectors proves successful.

Liebeck M, Halasi Z, Maroti A, 2019, Base sizes of primitive groups: bounds with explicit constants, *Journal of Algebra*, Vol: 521, Pages: 16-43, ISSN: 0021-8693

We show that the minimal base size b(G) of a finite primitive permutationgroup G of degree n is at most 2(log|G|/logn)+ 24. This bound is asymptotically best possible since there exists a sequence of primitivepermutation groups G of degrees n such that b(G)= 2(log|G|/log n) − 2and b(G) is unbounded. As a corollary we show that a primitive permutation group of degree n that does not contain the alternatinggroup Alt(n) has a base of size at most max {√n,25}.

Guralnick R, Liebeck MW, Permutation representations of nonsplit extensions involving alternating groups, *Israel Journal of Mathematics*, ISSN: 0021-2172

L. Babai has shown that a faithful permutation represen-tation of a nonsplit extension of a group by an alternating groupAkmust have degree at leastk2(12−o(1)), and has asked how sharp thislower bound is. We prove that Babai’s bound is sharp (up to a con-stant factor), by showing that there are such nonsplit extensions thathave faithful permutation representations of degree32k(k−1). We alsoreprove Babai’s quadratic lower bound with the constant12improved to1 (by completely different methods).

Lee M, Liebeck MW, Bases for quasisimple linear groups, *Algebra and Number Theory*, ISSN: 1937-0652

Let V be a vector space of dimension d over Fq, a finite field of q elements, and let G≤GL (V)∼=GLd(q) be a linear group. A basefor G is a set of vectors whose pointwise stabiliser in G is trivial. We prove that if G is a quasisimple group (i.e. Gis perfect and G/Z (G) is simple) acting irreducibly on V, then excluding two natural families, G has a base of size at most 6. The two families consist of alternating groups Alt m acting on the natural module of dimension d=m−1 orm−2, and classical groups with natural module of dimension d over subfields of Fq.

Liebeck MW, Guralnick R, Shalev A,
et al., Zero-one generation laws for finite simple groups, *Proceedings of the American Mathematical Society*, ISSN: 0002-9939

LetGbe a simple algebraic group over the algebraic closure ofFp(pprime), and letG(q) denote a corresponding finite group of Lie type overFq, whereqis a power ofp. LetXbean irreducible subvariety ofGrfor somer≥2. We prove a zero-one law for the probability thatG(q) is generated by a randomr-tuple inX(q) =X∩G(q)r: the limit of this probability asqincreases (through values ofqfor whichXis stable under the Frobenius morphism definingG(q))is either 1 or 0. Indeed, to ensure that this limit is 1, one only needsG(q) to be generated by anr-tuple inX(q) for two sufficiently large values ofq. We also prove a version of this result wherethe underlying characteristic is allowed to vary.In our main application, we apply these results to the case wherer= 2 and the irreduciblesubvarietyX=C×D, a product of two conjugacy classes of elements of finite order inG. Thisleads to new results on random (2,3)-generation of finite simple groupsG(q) of exceptional Lietype: providedG(q) is not a Suzuki group, we show that the probability that a random involutionand a random element of order 3 generateG(q) tends to 1 asq→∞. Combining this with previousresults for classical groups, this shows that finite simple groups (apart from Suzuki groups andPSp4(q)) are randomly (2,3)-generated.Our tools include algebraic geometry, representation theory of algebraic groups, and charactertheory of finite groups of Lie type.

Liebeck MW, Bezrukavnikov R, Shalev A,
et al., Character bounds for finite groups of Lie type, *Acta Mathematica*, ISSN: 1871-2509

We establish new bounds on character values and character ratios for finite groups G of Lie type, which are considerably stronger than previously known bounds, and which are best possible in many cases. These bounds have the form |χ(g)| ≤ cχ(1)αg , and give rise to a variety of applications, for example to covering numbers and mixing times of random walks on such groups. In particular we deduce that, if G is a classical group in dimension n, then, under some conditions on G and g ∈ G, the mixing time of the random walk on G with the conjugacy class of g as a generating

Liebeck MW, Guralnick R, O'Brien E,
et al., 2018, Surjective word maps and Burnside's p^a q^b theorem, *Inventiones Mathematicae*, Vol: 213, Pages: 589-695, ISSN: 0020-9910

We prove surjectivity of certain word maps on finite non-abelian simple groups. More precisely, we prove the following: if N is a product of two prime powers, then the word map (x,y)↦xNyN is surjective on every finite non-abelian simple group; if N is an odd integer, then the word map (x,y,z)↦xNyNzN is surjective on every finite quasisimple group. These generalize classical theorems of Burnside and Feit–Thompson. We also prove asymptotic results about the surjectivity of the word map (x,y)↦xNyN that depend on the number of prime factors of the integer N.

Burness T, Liebeck MW, Shalev A, The length and depth of algebraic groups, *Mathematische Zeitschrift*, ISSN: 0025-5874

LetGbe a connected algebraic group. An unrefinable chain ofGis a chainof subgroupsG=G0> G1>···> Gt= 1, where eachGiis a maximal connectedsubgroup ofGi−1. We introduce the notion of the length (respectively, depth) ofG,defined as the maximal (respectively, minimal) length of such a chain. Working over analgebraically closed field, we calculate the length of a connected groupGin terms of thedimension of its unipotent radicalRu(G) and the dimension of a Borel subgroupBofthe reductive quotientG/Ru(G). In particular, a simple algebraic group of rankrhaslength dimB+r, which gives a natural extension of a theorem of Solomon and Turull onfinite quasisimple groups of Lie type. We then deduce that the length of any connectedalgebraic groupGexceeds12dimG.We also study the depth of simple algebraic groups. In characteristic zero, we showthat the depth of such a group is at most 6 (this bound is sharp). In the positivecharacteristic setting, we calculate the exact depth of each exceptional algebraic groupand we prove that the depth of a classical group (over a fixed algebraically closed fieldof positive characteristic) tends to infinity with the rank of the group.Finally we study the chain difference of an algebraic group, which is the differencebetween its length and its depth. In particular we prove that, for any connected algebraicgroupGwith soluble radicalR(G), the dimension ofG/R(G) is bounded above in termsof the chain difference ofG.

Burness TC, Liebeck MW, Shalev A, 2018, The depth of a finite simple group, *Proceedings of the American Mathematical Society*, Vol: 146, Pages: 2343-2358, ISSN: 0002-9939

We introduce the notion of the depth of a finite group G, defined as theminimal length of an unrefinable chain of subgroups from G to the trivial subgroup. Inthis paper we investigate the depth of (non-abelian) finite simple groups. We determinethe simple groups of minimal depth, and show, somewhat surprisingly, that alternatinggroups have bounded depth. We also establish general upper bounds on the depth ofsimple groups of Lie type, and study the relation between the depth and the much studiednotion of the length of simple groups. The proofs of our main theorems depend (amongother tools) on a deep number-theoretic result, namely, Helfgott’s recent solution of theternary Goldbach conjecture.

Liebeck MW, Burness TC, Shalev A, 2017, Generation of second maximal subgroups and the existence of special primes, *Forum of Mathematics, Sigma*, Vol: 5, ISSN: 2050-5094

Let G be a finite almost simple group. It is well known that G can be generated by three elements,and in previous work we showed that 6 generators suffice for all maximal subgroups of G. Inthis paper, we consider subgroups at the next level of the subgroup lattice—the so-called secondmaximal subgroups. We prove that with the possible exception of some families of rank 1 groupsof Lie type, the number of generators of every second maximal subgroup of G is bounded by anabsolute constant. We also show that such a bound holds without any exceptions if and only if thereare only finitely many primes r for which there is a prime power q such that (qr − 1)/(q − 1)is prime. The latter statement is a formidable open problem in Number Theory. Applications torandom generation and polynomial growth are also given.

Liebeck MW, Schul G, Shalev A, 2017, Rapid growth in finite simple groups, *Transactions of the American Mathematical Society*, Vol: 369, Pages: 2765-8779, ISSN: 1088-6850

We show that small normal subsets A of finite simple groups growvery rapidly – namely, |A2| ≥ |A|2− , where > 0 is arbitrarily small.Extensions, consequences, and a rapid growth result for simple algebraicgroups are also given.

Leemans D, Liebeck MW, 2017, Chiral polyhedra and finite simple groups, *Bulletin of the London Mathematical Society*, Vol: 49, Pages: 581-592, ISSN: 1469-2120

We prove that every finite non-abelian simple group acts asthe automorphism group of a chiral polyhedron, apart from the groupsP SL2(q),P SL3(q),P SU3(q) andA7.

Liebeck MW, Thomas AR, 2017, Finite subgroups of simple algebraic groups with irreducible centralizers, *Journal of Group Theory*, Vol: 20, Pages: 841-870, ISSN: 1433-5883

We determine all finite subgroups of simple algebraic groups that have irre-ducible centralizers – that is, centralizers whose connected component does notlie in a parabolic subgroup.

Liebeck MW, Character ratios for finite groups of Lie type, and applications, *Contemporary Mathematics*, Vol: 694, ISSN: 0271-4132

For a nite groupG, acharacter ratiois a complex number of the form (x) (1),wherex2Gand is an irreducible character ofG. Upper bounds for absolutevalues of character ratios, particularly for simple groups, have long been of interest,for various reasons; these include applications to covering numbers, mixing timesof random walks, and the study of word maps. In this article we shall survey someresults on character ratios for nite groups of Lie type, and their applications.Character ratios for alternating and symmetric groups have been studied in greatdepth also { see for example [32, 33] { culminating in the de nitive results andapplications to be found in [20]; but we shall not discuss these here.It is not hard to see the connections between character ratios and group struc-ture. Here are three well known, elementary results illustrating these connections.The rst two go back to Frobenius. Denote by Irr(G) the set of irreducible charac-ters ofG.

Gonshaw S, Liebeck MW, O'Brien E, 2016, Unipotent class representatives for finite classical groups, *Journal of Group Theory*, Vol: 20, Pages: 505-525, ISSN: 1435-4446

We describe explicitly representatives of the conjugacy classes ofunipotent elements of the finite classical groups.

Liebeck MW, Praeger CE, Saxl J, The classification of 3/2-transitive permutation groups and 1/2-transitive linear groups, *Proceedings of the American Mathematical Society*, ISSN: 1088-6826

A linear group G ≤ GL(V ), where V is a finite vector space, is called 12-transitive if allthe G-orbits on the set of nonzero vectors have the same size. We complete the classificationof all the 12-transitive linear groups. As a consequence we complete the determination of thefinite 32-transitive permutation groups – the transitive groups for which a point-stabilizerhas all its nontrivial orbits of the same size. We also determine the (k +12)-transitive groupsfor integers k ≥ 2.

Liebeck MW, Seitz GM, Testerman DM, 2015, Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups, *Pacific Journal of Mathematics*, Vol: 279, Pages: 357-382, ISSN: 0030-8730

For G a simple algebraic group over an algebraically closed field of characteristic 0, we determine the irreducible representations ρ:G→I(V), where I(V) denotes one of the classical groups SL(V), Sp(V), SO(V), such that ρ sends some distinguished unipotent element of G to a distinguished element of I(V). We also settle a base case of the general problem of determining when the restriction of ρ to a simple subgroup of G is multiplicity-free.

Liebeck MW, O'Brien EA, 2015, Recognition of finite exceptional groups of Lie type, *Transactions of the American Mathematical Society*, Vol: 368, Pages: 6189-6226, ISSN: 1088-6850

Let q be a prime power and let G be an absolutely irreducible subgroup ofGLd(F), where F is a finite field of the same characteristic as Fq, the field of q elements. Assume that G ∼= G(q), a quasisimple group of exceptional Lie type over Fq which is neither a Suzuki nor a Ree group. We present a Las Vegas algorithm that constructs an isomorphism from G to the standard copy of G(q). If G 6∼=3D4(q) with q even, then the algorithm runs in polynomial time, subject to the existence of a discrete log oracle.

Giudici M, Liebeck MW, Praeger CE,
et al., 2015, Arithmetic results on orbits of linear groups, *Transactions of the American Mathematical Society*, Vol: 368, Pages: 2415-2467, ISSN: 1088-6850

Liebeck MW, Shalev A, 2015, On fixed points of elements in primitive permutation groups, *JOURNAL OF ALGEBRA*, Vol: 421, Pages: 438-459, ISSN: 0021-8693

- Author Web Link
- Cite
- Citations: 4

Liebeck MW, 2015, On products of involutions in finite groups of Lie type in even characteristic, *JOURNAL OF ALGEBRA*, Vol: 421, Pages: 431-437, ISSN: 0021-8693

Liebeck MW, Shalev A, 2014, POWER SETS AND SOLUBLE SUBGROUPS, *PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY*, Vol: 142, Pages: 3757-3760, ISSN: 0002-9939

Lawther R, Liebeck MW, Seitz GM, 2014, Outer unipotent classes in automorphism groups of simple algebraic groups, *PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY*, Vol: 109, Pages: 553-595, ISSN: 0024-6115

- Author Web Link
- Open Access Link
- Cite
- Citations: 2

Liebeck MW, Shalev A, 2014, Bases of primitive linear groups II, *JOURNAL OF ALGEBRA*, Vol: 403, Pages: 223-228, ISSN: 0021-8693

- Author Web Link
- Cite
- Citations: 5

Liebeck MW, Shalev A, 2013, POWERS IN FINITE GROUPS AND A CRITERION FOR SOLUBILITY, *PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY*, Vol: 141, Pages: 4179-4189, ISSN: 0002-9939

- Author Web Link
- Cite
- Citations: 3

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.