Imperial College London

ProfessorMichaelLowe

Faculty of EngineeringDepartment of Mechanical Engineering

Head of Department of Mechanical Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 7000m.lowe Website

 
 
//

Assistant

 

Ms Nina Hancock +44 (0)20 7594 7068

 
//

Location

 

577DCity and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

294 results found

Quintanilla FH, Fan Z, Lowe MJS, Craster RVet al., 2015, Guided waves' dispersion curves in anisotropic viscoelastic single- and multi-layered media, Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, Vol: 471, ISSN: 1471-2946

Guided waves propagating in lossy media are encountered in many problems across different areas of physics such as electromagnetism, elasticity and solid-state physics. They also constitute essential tools in several branches of engineering, aerospace and aircraft engineering, and structural health monitoring for instance. Waveguides also play a central role in many non-destructive evaluation applications. It is of paramount importance to accurately represent the material of the waveguide to obtain reliable and robust information about the guided waves that might be excited in the structure. A reasonable approximation to real solids is the perfectly elastic approach where the frictional losses within the solid are ignored. However, a more realistic approach is to represent the solid as a viscoelastic medium with attenuation for which the dispersion curves of the modes are, in general, different from their elastic counterparts. Existing methods are capable of calculating dispersion curves for attenuated modes but they can be troublesome to find and the solutions are not as reliable as in the perfectly elastic case. In this paper, in order to achieve robust and accurate results for viscoelasticity a spectral collocation method is developed to compute the dispersion curves in generally anisotropic viscoelastic media in flat and cylindrical geometry. Two of the most popular models to account for material damping, Kelvin–Voigt and Hysteretic, are used in various cases of interest. These include orthorhombic and triclinic materials in single- or multi-layered arrays. Also, and due to its importance in industry, a section is devoted to pipes filled with viscous fluids. The results are validated by comparison with those from semi-analytical finite-element simulations.

Journal article

Van Pamel A, Brett CR, Huthwaite P, Lowe MJSet al., 2015, Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions, Journal of the Acoustical Society of America, Vol: 138, Pages: 2326-2336, ISSN: 0001-4966

Finite element modelling is a promising tool for further progressing the development of ultrasonic non-destructive evaluation of polycrystalline materials. Yet its widespread adoption has been held back due to a high computational cost, which has restricted current works to relatively small models and to two dimensions. However, the emergence of sufficiently powerful computing, such as highly efficient solutions on graphics processors, is enabling a step improvement in possibilities. This article aims to realise those capabilities to simulate ultrasonic scattering of longitudinal waves in an equiaxed polycrystalline material in both two (2D) and three dimensions (3D). The modelling relies on an established Voronoi approach to randomly generate a representative grain morphology. It is shown that both 2D and 3D numerical data show good agreement across a range of scattering regimes in comparison to well-established theoretical predictions for attenuation and phase velocity. In addition, 2D parametric studies illustrate the mesh sampling requirements for two different types of mesh to ensure modelling accuracy and present useful guidelines for future works. Modelling limitations are also shown. It is found that 2D models reduce the scattering mechanism in the Rayleigh regime.

Journal article

Pettit JR, Walker AE, Lowe MJS, 2015, Improved Detection of Rough Defects for Ultrasonic Nondestructive Evaluation Inspections Based on Finite Element Modeling of Elastic Wave Scattering, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol: 62, Pages: 1797-1808, ISSN: 0885-3010

Defects which possess rough surfaces greatly affectultrasonic wave scattering behaviour, usually reducing the magnitudeof reflected signals. Understanding and accurately predictingthe influence of roughness on signal amplitudes is crucial,especially in Non-Destructive Evaluation (NDE) for the inspectionof safety-critical components. An extension of Kirchhoff theoryhas formed the basis for many practical applications; however, itis widely recognised that these predictions are pessimistic owingto analytical approximations. A numerical full field modellingapproach does not fall victim to such limitations. Here, a FiniteElement (FE) modelling approach is used to develop a realisticmethodology for the prediction of expected back-scattering fromrough defects. The ultrasonic backscatter from multiple roughsurfaces defined by the same statistical class is calculated fornormal and oblique incidence. Results from FE models arecompared with Kirchhoff theory predictions and experimentalmeasurements in order to establish confidence in the newapproach. At lower levels of roughness excellent agreement isobserved between Kirchhoff theory, FE and experimental data,whilst at higher values the pessimism of Kirchhoff theory isconfirmed. An important distinction is made between the total,coherent and diffuse signals and it is observed, significantly, thatthe total signal amplitude is representative of the informationobtained during an inspection. This analysis provides a robustbasis for a less sensitive, yet safe, threshold for inspection ofrough defects.

Journal article

Fan Z, Mark AF, Lowe MJS, Withers PJet al., 2015, Nonintrusive Estimation of Anisotropic Stiffness Maps of Heterogeneous Steel Welds for the Improvement of Ultrasonic Array Inspection, IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, Vol: 62, Pages: 1530-1543, ISSN: 0885-3010

—It is challenging to inspect austenitic welds nondestructivelyusing ultrasonic waves because the spatially varyingelastic anisotropy of weld microstructures can lead to thedeviation of ultrasound. Models have been developed to predictthe propagation of ultrasound in such welds once the weldstiffness heterogeneity is known. Consequently, it is desirableto have a means of measuring the variation in elastic anisotropyexperimentally so as to be able to correct for deviationsin ultrasonic pathways for the improvement of weld inspection.This paper investigates the use of external nonintrusiveultrasonic array measurements to construct such weld stiffnessmaps, representing the orientation of the stiffness tensor accordingto location in the weld cross section. An inverse modelbased on a genetic algorithm has been developed to recover asmall number of key parameters in an approximate model ofthe weld map, making use of ultrasonic array measurements.The approximate model of the weld map uses the Modeling ofanIsotropy based on Notebook of Arcwelding (MINA) formulation,which is one of the representations that has been proposedby other researchers to provide a simple, yet physicallybased, description of the overall variations of orientations ofthe stiffness tensors over the weld cross section. The choice ofsensitive ultrasonic modes as well as the best monitoring positionshave been discussed to achieve a robust inversion. Experimentshave been carried out on a 60-mm-thick multipasstungsten inert gas (TIG) weld to validate the findings of themodeling, showing very good agreement. This work shows thatultrasonic array measurements can be used on a single side ofa butt-welded plate, such that there is no need to access theremote side, to construct an approximate but useful weld mapof the spatial variations in anisotropic stiffness orientation thatoccur within the weld.

Journal article

Van Pamel A, Huthwaite P, Brett CR, Lowe MJSet al., 2015, Finite Element Modelling of Wave Propagation in Highly Scattering Materials, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Ultrasonic inspection of highly scattering materials presents challenges for industry. This article describes a Finite Element modelling methodology to simulate wave propagation within polycrystalline materials. Concerns are answered regarding its required mesh sampling and ability to capture the complex scattering physics. It is shown that grain scattering phenomena are closely reproduced across a range of scattering regimes. The procedure is subsequently applied to investigate the optimal configuration of an array inspecting such a material. It is found that in certain situations, separating emitter and receiver can be advantageous as this reduces the received backscatter.

Conference paper

Leinov E, Cawley P, Lowe MJS, 2015, Guided Wave Attenuation in Coated Pipes Buried in Sand, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8” pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm−1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm−1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

Conference paper

Haith MI, Ewert U, Hohendorf S, Bellon C, Deresch A, Huthwaite P, Lowe MJS, Zscherpel Uet al., 2015, Modelling Based Radiography for NDE of Subsea Pipelines, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

This work presents the use of limited experimental measurements to develop a set of calibrated simulation parameters that can then be used for reliable simulation of subsea pipeline inspections. The modelling software aRTist is used as the simulation tool, and the calibration is through comparison with experimental images of a well characterised sample in a water tank. Image quality parameters such as signal-to-noise ratio, contrast and basic spatial resolution are compared with the aim of matching simulated values to experimental results. Currently the model is partially calibrated, with signal-to-noise ratio successfully matched while differences are still found in contrast-to-noise ratio comparisons. This means that measurements depending on absolute intensity are not accurate enough in the simulation at this stage. However, the simulation is found to be accurate for wall thickness measurements in tangential images, which are not based on absolute intensity, with simulated and experimental cases producing similar results

Conference paper

Ewert U, Tschaikner M, Hohendorf S, Bellon C, Haith MI, Huthwaite P, Lowe MJSet al., 2015, Corrosion Monitoring with Tangential Radiography and Limited View Computed Tomography, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Accurate and reliable detection of subsea pipeline corrosion is required in order to verify the integrity of the pipeline. A laboratory trial was conducted with a representative pipe sample. The accurate measurement of the wall thickness and corrosion was performed with high energy X-rays and a digital detector array. A 7.5 MV betatron was used to penetrate a stepped pipe and a welded test pipe of 3 m length and 327 mm outer diameter, with different artificial corrosion areas in the 24 mm thick steel wall. The radiographs were taken with a 40 x 40 cm² digital detector array, which was not large enough to cover the complete pipe diameter after magnification. A C-arm based geometry was tested to evaluate the potential for automated inspection in field. The primary goal was the accurate measurement of wall thickness conforming to the standard. The same geometry was used to explore the ability of a C-arm based scanner in asymmetric mode for computed tomography (CT) measurement, taking projections covering only two thirds of the pipe diameter. The technique was optimized with the modelling software aRTist. A full volume of the pipe was reconstructed and the CT data set was used for reverse engineering, providing a CAD file for further aRTist simulations to explore the technique for subsea inspections.

Conference paper

Egerton JS, Lowe MJS, Halai HV, Huthwaite Pet al., 2015, Improved FE Simulation of Ultrasound in Plastics, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Some UK and US nuclear power stations have begun introducing high-density polyethylene (HDPE) pipes to certain cooling water circuits. HDPE offers improved performance over existing pipe materials, such as cast iron, by not corroding in-ternally or externally, yet occasional defects form in HDPE pipe fusion joints at the production stage. This necessitates suitable volumetric NDE to safely and reliably assess joint integrity. Ultrasonic NDE is the most viable current technique, but improved inspection capability is needed, given that the challenges of NDE of plastics differ significantly from those of metals. This also necessitates an accurate and reliable wave propagation simulation technique, such as finite-element (FE) modelling. Accurate FE modelling of ultrasound in high-density polyethylene (HDPE) must account for frequency-dependent behaviour but, the most ap-parent way to do so – frequency domain FE modelling – is prohibitively computationally expensive and potentially impossible to solve for all but the smallest models. Here we present a multiband time domain FE simulation technique to address this. The proposed multiband technique is a computationally efficient and accurate approach to time domain FE modelling of ultrasonic wave propagation. It could, for example, be used to validate the NDE of a large range of candidate fusion joint defects in HDPE. The proposed model uses a small number of time domain FE simulations at individual frequency bands that together cover the bandwidth of interest. The frequency dependence of acoustic properties of ultrasound is accurately represented for HDPE and could readily be applied to other media.

Conference paper

Huthwaite P, Lowe M, Cawley P, 2015, Guided Wave Tomography Performance Analysis, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Quantifying wall loss caused by corrosion is a significant challenge for the petrochemical industry. Corrosion commonly occurs at pipe supports, where surface access for inspection is limited. Guided wave tomography is pursued as a solution to this: guided waves are transmitted through the region of interest from an array, and tomographic reconstruction techniques are applied to the measured signals in order to produce a map of thickness. There are many parameters in the system which can affect the performance; this paper investigates how the accuracy varies as defect width and depth, operating frequency and guided wave mode are all changed. For the S0 mode, the best performance was seen around 170kHz on the 10mm plate, with poor performance seen at almost all other frequencies. A0 showed better performance across a broad range of frequencies, with resolution improving with frequency as the wavelength reduced. However, it was shown that the resolution limit did drop relative to the wavelength, limiting the performance at high frequencies slightly.

Conference paper

Quintanilla FH, Fan Z, Lowe MJS, Craster RVet al., 2015, Dispersion Loci of Guided Waves in Viscoelastic Composites of General Anisotropy, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: American Institute of Physics (AIP), ISSN: 1551-7616

Guided waves play an important role in many applications of NDE to structures of flat and cylindrical geometry. In order to develop and optimise the inspection, it is essential to have a good understanding of the wave modes that can propagate in the target structure. These can be complicated, especially in structures composed of multiple layers, anisotropic properties or materials that exhibit damping that absorbs the energy of the waves. Dispersion curves in anisotropic viscoelastic media are presented here. They have been computed by using a pseudospectral collo-cation method, details of its implementation are briefly outlined and references to the relevant literature given.

Conference paper

Leinov E, Lowe MJS, Cawley P, 2015, Investigation of guided wave propagation and attenuation in pipe buried in sand, JOURNAL OF SOUND AND VIBRATION, Vol: 347, Pages: 96-114, ISSN: 0022-460X

Journal article

Seher M, Huthwaite P, Lowe MJS, Nagy PBet al., 2015, Model-Based Design of Low Frequency Lamb Wave EMATs for Mode Selectivity, Journal of Nondestructive Evaluation, Vol: 34, ISSN: 1573-4862

A low-frequency, omni-directional A0 Lamb wave ElectroMagnetic Acoustic Transducer (EMAT) is developed for applications in guided wave tomography, operating at 50 kHz on a 10 mm thick steel plate. The key objective is to excite an acceptably pure A0 wave mode in relation to the S0 mode, which can also be present at this operating point and is desired to be suppressed by approximately 30 dB. For that, a parametric Finite Element (FE) model of the design concept is implemented in a commercially available FE software, where the bias magnetic field is calculated initially, then combined with the eddy current caused by the induction coil to produce a force. A numerical optimization process employing a genetic algorithm is set up and the EMAT design is optimized to yield an improved A0 mode selectivity. The parameters subjected to optimization are the magnet diameter and the magnet lift-off, which control the direction of the exciting force in the skin depth layer and therefore the mode selectivity. Although there are three possible electromagnetic acoustic interaction mechanisms, the optimisation considers only the Lorentz force, as its performance surface contains a clear optimum and from the optimised design a physical prototype is built. The FE model is validated against measurements on an aluminium plate for the Lorentz force excitation mechanism and on a steel plate for both the Lorentz and magnetisation force. For the steel plate, it is found that only considering the Lorentz force leads to a significant overestimation of the mode selectivity, as the S0 amplitude is underestimated by the Lorentz force, but the A0 amplitude remains mainly uninfluenced. Further, it has been found that additionally including the magnetisation force into the optimisation leads to a better mode selectivity, however, the optimisation drives the optimum to a minimum magnet diameter and therefore reduces the EMAT sensitivity. In a numerical study robustness is shown for fair

Journal article

Lan B, lowe M, dunne F, 2015, A generalized spherical harmonic deconvolution to obtain texture of cubic materials from ultrasonic wave speed, Journal of the Mechanics and Physics of Solids, Vol: 83, Pages: 221-242, ISSN: 0022-5096

In this paper, the spherical harmonic convolution approach for HCP materials (Lan et al., 2015) is extended into a generalised form for the principal purpose of bulk texture determination in cubic polycrystals from ultrasonic wave speed measurements. It is demonstrated that the wave speed function of a general single crystal convolves with the polycrystal Orientation Distribution Function (ODF) to make the resultant polycrystal wave speed function such that when the three functions are expressed in harmonic expansions, the coefficients of any one function may be determined from the coefficients of the other two. All three Euler angles are taken into account in the description of the ODF such that the theorem applies for all general crystal systems.The forward problem of predicting polycrystal wave speed with knowledge of single crystal properties and the ODF is solved for all general cases, with validation carried out on cubic textures showing strong sensitivity to texture and excellent quantitative accuracy in predicted wave speed amplitudes. Importantly, it is also revealed by the theorem that the cubic structure is one of only two crystal systems (the other being HCP) whose orientation distributions can be inversely determined from polycrystal wave velocities by virtue of their respective crystal symmetries. Proof of principle is then established by recovering the ODFs of representative cubic textures solely from the wave velocities generated from a computational model using these texture inputs, and excellent accuracies are achieved in the recovered ODF coefficients as well as the resultant pole figures. Hence the methodology is argued to provide a powerful technique for wave propagation studies and bulk texture measurement in cubic polycrystals and beyond.Keywords Texture; Generalised spherical convolution; Ultrasound; Cubic polycrystals

Journal article

Lan B, Lowe M, DUNNE F, 2015, A spherical harmonic approach for the determination of HCP texture from ultrasound: A solution to the inverse problem, Journal of the Mechanics and Physics of Solids, Vol: 83, Pages: 179-198, ISSN: 0022-5096

A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.Keywords Texture; Spherical harmonics; Ultrasound; HCP polycrystals

Journal article

Shi F, Choi W, Lowe MJS, Skelton EA, Craster RVet al., 2015, The validity of Kirchhoff theory for scattering of elastic waves from rough surfaces, PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Vol: 471, ISSN: 1364-5021

Journal article

Quintanilla FH, Lowe MJS, Craster RV, 2015, Modeling guided elastic waves in generally anisotropic media using a spectral collocation method, Journal of the Acoustical Society of America, Vol: 137, Pages: 1180-1194, ISSN: 0001-4966

Guided waves are now well established for some applications in the non-destructive evaluation of structures and offer potential for deployment in a vast array of other cases. For their development, it is important to have reliable and accurate information about the modes that propagate for particular waveguide structures. Essential information that informs choices of mode transducer, operating frequencies, and interpretation of signals, among other issues, is provided by the dispersion curves of different modes within various combinations of geometries and materials. In this paper a spectral collocation method is successfully used to handle the more complicated and realistic waveguide problems that are required in non-destructive evaluation; many pitfalls and limitations found in root-finding routines based on the partial wave method are overcome by using this approach. The general cases presented cover anisotropic homogeneous perfectly elastic materials in flat and cylindrical geometry. Non-destructive evaluation applications include complex waveguide structures, such as single or multi-layered fiber composites, lined, bonded and buried structures. For this reason, arbitrarily multi-layered systems with both solid and fluid layers are also addressed as well as the implementation of interface models of imperfect boundary conditions between layers.

Journal article

Shi F, Choi W, Skelton E, Lowe M, Craster Ret al., 2015, Investigation of the Validity of the Elastic Kirchhoff Approximation for Rough Cracks Using a Finite Element Approach, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1722-1729, ISSN: 0094-243X

Conference paper

Seher M, Huthwaite P, Lowe M, Cawley Pet al., 2015, Experimental Study of A0 Lamb Wave Tomography, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 245-253, ISSN: 0094-243X

Conference paper

Leinov E, Cawley P, Lowe MJS, 2015, Guided Wave Attenuation in Pipes Buried in Sand, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 227-236, ISSN: 0094-243X

Conference paper

Pettitt JR, Walker A, Lowe MJS, 2015, An optimised stiffness reduction method for simulating infinite elastic space using commercial Finite Elements codes, 13th Anglo-French Physical Acoustics Conference (AFPAC), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Pettit JR, Walker AE, Lowe MJS, 2015, Modelling NDE Pulse-Echo inspection Of Misorientated Planar Rough Defects Using An Elastic Finite Element Method, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1730-1737, ISSN: 0094-243X

Conference paper

Van Pamel A, Huthwaite P, Brett CR, Lowe MJSet al., 2015, A Finite Element Model Investigation of Ultrasonic Array Performance for Inspecting Polycrystalline Materials, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1007-1014, ISSN: 0094-243X

Conference paper

Van Pamel A, Brett CR, Lowe MJS, 2015, An Initial Investigation into Pseudo-Coloring for Ultrasonic NDE of Polycrystalline Materials, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1031-1036, ISSN: 0094-243X

Conference paper

Quintanilla FH, Lowe M, Craster R, 2015, Dispersion Curves for Guided Elastic Waves in Multilayered Anisotropic Media Generated with the Spectral Method, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 739-745, ISSN: 0094-243X

Conference paper

Huthwaite P, Shi F, Van Pamel A, Lowe MJSet al., 2015, High-Speed GPU-Based Finite Element Simulations for NDT, 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1815-1819, ISSN: 0094-243X

Conference paper

Van Pamel A, Brett CR, Lowe MJS, 2014, A Methodology for Evaluating Detection Performance of Ultrasonic Array Imaging Algorithms for Coarse-Grained Materials, IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, Vol: 61, Pages: 2042-2053, ISSN: 0885-3010

Journal article

Shi F, Choi W, Skelton EA, Lowe MJS, Craster RVet al., 2014, A Time-Domain Finite Element Boundary Integration Method for Ultrasonic Nondestructive Evaluation, IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, Vol: 61, Pages: 2054-2066, ISSN: 0885-3010

Journal article

Mark AF, Fan Z, Azough F, Lowe MJS, Withers PJet al., 2014, Investigation of the elastic/crystallographic anisotropy of welds for improved ultrasonic inspections, Materials Characterization, Vol: 98, Pages: 47-53, ISSN: 1873-4189

Journal article

Deschamps M, Lowe M, 2014, Preface, Ultrasonics, Vol: 54, ISSN: 0041-624X

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00153511&person=true&page=2&respub-action=search.html