Imperial College London

PROFESSOR MIRIAM F. MOFFATT

Faculty of MedicineNational Heart & Lung Institute

Professor of Respiratory Genetics
 
 
 
//

Contact

 

+44 (0)20 7594 2942m.moffatt

 
 
//

Location

 

400Guy Scadding BuildingRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

257 results found

Singanayagam A, Glanville N, Cuthbertson L, Bartlett NW, Finney LJ, Turek E, Bakhsoliani E, Calderazzo MA, Trujillo-Torralbo M-B, Footitt J, James PL, Fenwick P, Kemp SV, Clarke TB, Wedzicha JA, Edwards MR, Moffatt M, Cookson WO, Mallia P, Johnston SLet al., 2019, Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease., Science Translational Medicine, Vol: 11, Pages: 1-13, ISSN: 1946-6234

Bacterial infection commonly complicates inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD). The mechanisms of increased infection susceptibility and how use of the commonly prescribed therapy inhaled corticosteroids (ICS) accentuates pneumonia risk in COPD are poorly understood. Here, using analysis of samples from patients with COPD, we show that ICS use is associated with lung microbiota disruption leading to proliferation of streptococcal genera, an effect that could be recapitulated in ICS-treated mice. To study mechanisms underlying this effect, we used cellular and mouse models of streptococcal expansion with Streptococcus pneumoniae, an important pathogen in COPD, to demonstrate that ICS impairs pulmonary clearance of bacteria through suppression of the antimicrobial peptide cathelicidin. ICS impairment of pulmonary immunity was dependent on suppression of cathelicidin because ICS had no effect on bacterial loads in mice lacking cathelicidin (Camp-/-) and exogenous cathelicidin prevented ICS-mediated expansion of streptococci within the microbiota and improved bacterial clearance. Suppression of pulmonary immunity by ICS was mediated by augmentation of the protease cathepsin D. Collectively, these data suggest a central role for cathepsin D/cathelicidin in the suppression of antibacterial host defense by ICS in COPD. Therapeutic restoration of cathelicidin to boost antibacterial immunity and beneficially modulate the lung microbiota might be an effective strategy in COPD.

Journal article

Sugier P-E, Sarnowski C, Granell R, Laprise C, Ege MJ, Margaritte-Jeannin P, Dizier M-H, Minelli C, Moffatt MF, Lathrop M, Cookson WOCM, Henderson AJ, von Mutius E, Kogevinas M, Demenais F, Bouzigon Eet al., 2019, Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood., Clinical and Experimental Allergy, ISSN: 0954-7894

BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7 ), 14q22 (rs7493885 near NIN; P=2.9x10-6 ) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSION AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms. This article is protected by copyright. All rights reserved.

Journal article

Ciano M, Mantellato G, Connolly M, Paul-Clark M, Mitchell J, Wilson-Owen S, Cookson W, Moffatt M, Hughes S, Polkey M, Kemp P, Natanek Set al., EGF receptor (EGFR) inhibition promotes a slow-twitch oxidative, over a fast-twitch, muscle phenotype, Scientific Reports, ISSN: 2045-2322

A low quadriceps slow-twitch (ST), oxidative (relative to fast-twitch) fiber proportion is prevalent in chronic diseases such Chronic Obstructive Pulmonary Disease (COPD) and is associated with exercise limitation and poor outcomes. Benefits of an increased ST fiber proportion are demonstrated in genetically modified animals. Pathway analysis of published data of differentially expressed genes in mouse ST and FT fibers, mining of our microarray data and a qPCR analysis of quadriceps specimens from COPD patients and controls were performed. ST markers were quantified in C2C12 myotubes with EGF-neutralizing antibody, EGFR inhibitor or an EGFR-silencing RNA added. A zebrafish egfra mutant was generated by genome editing and ST fibers counted. EGF signaling was (negatively) associated with the ST muscle phenotype in mice and humans, and muscle EGF transcript levels were raised in COPD. In C2C12 myotubes, EGFR inhibition/silencing increased ST, including mitochondrial, markers. In zebrafish, egfra depletion increased ST fibers and mitochondrial content. EGF is negatively associated with ST muscle phenotype in mice, healthy humans and COPD patients. EGFR blockade promotes the ST phenotype in myotubes and zebrafish embryos. EGF signaling suppresses the ST phenotype, therefore EGFR inhibitors may be potential treatments for COPD-related muscle ST fiber loss.

Journal article

Groves H, Higham S, Moffatt M, Cox M, Tregoning Jet al., 2019, Respiratory viral infection alters the gut microbiota by inducing inappetence, Publisher: bioRxiv

Abstract The gut microbiota has an important role in health and disease. Respiratory viral infections are extremely common but their impact on the composition and function of the gut microbiota is poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here we show that weight loss during Respiratory Syncytial Virus (RSV) or influenza virus infection was due to decreased food consumption, and that fasting mice independently of infection altered gut microbiota composition. While the acute phase TNF-α response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, depleting CD8 + cells increased food intake and prevented weight loss resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the faecal gut metabolome during RSV infection, with a significant shift in lipid metabolism. Sphingolipids, poly-unsaturated fatty acids (PUFAs) and the short-chain fatty acid (SCFA) valerate all increased in abundance in the faecal metabolome following RSV infection. Whether this, and the impact of infection-induced anorexia on the gut microbiota, are part of a protective, anti-inflammatory response during respiratory viral infections remains to be determined.

Working paper

Januszewski A, Zhang YZ, Chang W-C, Laggner U, Bowman A, Adefila-Ideozu T, Vivanco I, Moffatt MF, Cookson WO, Gupta NP, Nicholson AG, Bowcock A, Popat Set al., 2019, Impact of MET variants on PD-L1 expression in pleomorphic lung carcinoma, European Lung Cancer Congress (ELCC), Publisher: OXFORD UNIV PRESS, Pages: 1-1, ISSN: 0923-7534

Conference paper

Ahmed B, Cox M, Cuthbertson L, James P, Cookson W, Davies J, Moffatt M, Bush Aet al., 2019, Longitudinal development of the airway microbiota in infants with cystic fibrosis, Scientific Reports, Vol: 9, ISSN: 2045-2322

The pathogenesis of airway infection in cystic fibrosis (CF) is poorly understood. We performed a longitudinal study coupling clinical information with frequent sampling of the microbiota to identify changes in the airway microbiota in infancy that could underpin deterioration and potentially be targeted therapeutically. Thirty infants with CF diagnosed on newborn screening (NBS) were followed for up to two years. Two hundred and forty one throat swabs were collected as a surrogate for lower airway microbiota (median 35 days between study visits) in the largest longitudinal study of the CF oropharyngeal microbiota. Quantitative PCR and Illumina sequencing of the 16S rRNA bacterial gene were performed. Data analyses were conducted in QIIME and Phyloseq in R. Streptococcus spp. and Haemophilus spp. were the most common genera (55% and 12.5% of reads respectively) and were inversely related. Only beta (between sample) diversity changed with age (Bray Curtis r2 = 0.15, P = 0.03). Staphylococcus and Pseudomonas were rarely detected. These results suggest that Streptococcus spp. and Haemophilus spp., may play an important role in early CF. Whether they are protective against infection with more typical CF micro-organisms, or pathogenic and thus meriting treatment needs to be determined.

Journal article

Turek EM, Cox MJ, Hunter M, Hui J, James P, Willis-Owen SAG, Cuthbertson L, James A, Musk AW, Moffatt MF, Cookson WOCMet al., 2019, Distinctive airway microbial ecology of smokers and asthmatics, Publisher: Cold Spring Harbor Laboratory

<jats:p>The airways of the lung carry microbiota that contribute to respiratory health<jats:sup>1</jats:sup>. The ecology of normal airway microbial communities, their responses to environmental events, and the mechanisms through which they cause or modify disease are poorly understood. Cigarette smoking is the dominant malign environmental influence on lung function, causing 11·5% of deaths globally<jats:sup>2</jats:sup>. Asthma is the most prevalent chronic respiratory disease worldwide<jats:sup>3,4</jats:sup>, but was uncommon 100 years ago<jats:sup>5</jats:sup>. The asthma pandemic is linked to urbanization, leading to considerations of protective microbiota loss (the “hygiene hypothesis”)<jats:sup>6-8</jats:sup> and acquisition of strains that may damage the airway epithelia<jats:sup>9</jats:sup>. We therefore investigated oropharyngeal airway microbial community structures in a general population sample of Australian adults. We show here that airway bacterial communities were strongly organized into distinctive co-abundance networks (“guilds”), just seven of which contained 99% of all oropharyngeal operational taxonomic units (OTUs). Smoking was associated with diversity loss, negative effects on abundant taxa, profound alterations to network structure and marked expansion of <jats:italic>Streptococcus</jats:italic> spp.. These perturbations may influence chronic obstructive pulmonary disease<jats:sup>10</jats:sup> (COPD) and lung cancer<jats:sup>11</jats:sup>. In contrast to smokers, the loss of diversity in asthmatics selectively affected low abundance but prevalent OTUs from poorly understood genera such as <jats:italic>Selenomonas, Megasphaera</jats:italic> and <jats:italic>Capnocytophaga</jats:italic>, without coarse scale network disruption. The results open the possibility that replaceme

Working paper

Dunning J, Blankley S, Hoang LT, Cox M, Graham CM, James PL, Bloom CI, Chaussabel D, Banchereau J, Brett SJ, MOSAIC Investigators, Moffatt MF, O'Garra A, Openshaw PJMet al., 2019, Author Correction: Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza., Nature Immunology, Vol: 20, Pages: 373-373, ISSN: 1529-2908

In the version of this article initially published, a source of funding was not included in the Acknowledgements section. That section should include the following: P.J.M.O. was supported by EU FP7 PREPARE project 602525. The error has been corrected in the HTML and PDF version of the article.

Journal article

Wootton DG, Cox MJ, Gloor GB, Litt D, Hoschler K, German E, Court J, Eneje O, Keogan L, Macfarlane L, Wilks S, Diggles PJ, Woodhead M, Moffatt MF, Cookson WOC, Gordon SBet al., 2019, A haemophilus sp. dominates the microbiota of sputum from UK adults with non-severe community acquired pneumonia and chronic lung disease, Scientific Reports, Vol: 9, ISSN: 2045-2322

The demographics and comorbidities of patients with community acquired pneumonia (CAP) vary enormously but stratified treatment is difficult because aetiological studies have failed to comprehensively identify the pathogens. Our aim was to describe the bacterial microbiota of CAP and relate these to clinical characteristics in order to inform future trials of treatment stratified by co-morbidity. CAP patients were prospectively recruited at two UK hospitals. We used 16S rRNA gene sequencing to identify the dominant bacteria in sputum and compositional data analysis to determine associations with patient characteristics. We analysed sputum samples from 77 patients and found a Streptococcus sp. and a Haemophilus sp. were the most relatively abundant pathogens. The Haemophilus sp. was more likely to be dominant in patients with pre-existing lung disease, and its relative abundance was associated with qPCR levels of Haemophilus influenzae. The most abundant Streptococcus sp. was associated with qPCR levels of Streptococcus pneumoniae but dominance could not be predicted from clinical characteristics. These data suggest chronic lung disease influences the microbiota of sputum in patients with CAP. This finding could inform a trial of stratifying empirical CAP antibiotics to target Haemophilus spp. in addition to Streptococcus spp. in those with chronic lung disease.

Journal article

Zhang Y, Willis-Owen S, Spiegel S, Lloyd C, Moffatt M, Cookson Wet al., 2019, The ORMDL3 asthma gene regulates ICAM1 and has multiple effects on cellular inflammation, American Journal of Respiratory and Critical Care Medicine, Vol: 199, Pages: 478-488, ISSN: 1073-449X

Rationale: Polymorphisms on chromosome 17q21 confer the major genetic susceptibility to childhood-onset asthma. Risk alleles positively correlate with ORMDL3 expression. The locus influences disease severity and the frequency of human rhinovirus (HRV) initiated exacerbations. ORMDL3 is known to regulate sphingolipid synthesis by binding serine palmitoyltransferase (SPT), but its role in inflammation is incompletely understood. Objectives: To investigate the role of ORMDL3 in cellular inflammation. Methods: We modelled time-series of IL1B-induced inflammation in A549 cells, using cytokine production as outputs and testing effects of ORMDL3 siRNA knockdown, ORMDL3 overexpression, and the SPT inhibitor myriocin. We replicated selected findings in normal human bronchial epithelial (NHBE) cells. Cytokine and metabolite levels were analysed by ANOVA. Transcript abundances were analysed by group means parameterisation, controlling the false discovery rate (FDR) below 0.05. Measurements and Main Results: Silencing ORMDL3 led to steroid-independent reduction of IL6 and IL8 release and reduced ER stress after IL1B. Overexpression and myriocin conversely augmented cytokine release. Knockdown reduced expression of genes regulating host-pathogen interactions, stress responses and ubiquitination: in particular ORMDL3 knockdown strongly reduced expression of the HRV receptor ICAM1. Silencing led to changes in levels of transcripts and metabolites integral to glycolysis. Increased levels of ceramides and the immune mediator sphingosine-1-P (S1P) were also observed. Conclusions: The results show ORMDL3 has pleiotropic effects during cellular inflammation, consistent with its substantial genetic influence on childhood asthma. Actions on ICAM1 provide a mechanism for the locus to confer susceptibility to HRV-induced asthma.

Journal article

Cowman SA, James P, Wilson R, Cookson WOC, Moffatt MF, Loebinger MRet al., 2018, Profiling mycobacterial communities in pulmonary nontuberculous mycobacterial disease, PLoS ONE, Vol: 13, ISSN: 1932-6203

The diagnosis of pulmonary non-tuberculous mycobacterial disease (pNTM) is dependent on the isolation of NTM in culture, which is prone to overgrowth and contamination and may not capture the diversity of mycobacteria present, including rare or unidentified species. This study aimed to develop a culture independent method of detecting and identifying mycobacteria from sputum samples using partial sequencing of the hsp65 gene. DNA was extracted from sputum samples from subjects with pNTM and disease controls. Multiplexed partial sequencing of the hsp65 gene was performed using the Illumina MiSeq and custom primers. A reference database of hsp65 sequences was created for taxonomy assignment. Sequencing results were obtained from 42 subjects (31 cases, 11 controls). Mycobacterial sequences were identified in all subjects. In 90.5% of samples more than one species was found (median 5.5). The species isolated in culture was detected by sequencing in 81% of subjects and was the most abundant species in 62%. The sequencing of NTM from clinical samples reveals a far greater diversity than conventional culture and suggests NTM are present as communities rather than a single species. NTM were found to be present even in the absence of isolation in culture or clinical disease.

Journal article

Januszewski A, Zhang YZ, Chang W, Laggner U, Bowman A, Adefila-Ideozu T, Cookson W, Moffatt M, Nicholson A, Bowcock A, Popat Set al., 2018, Heterogeneity in MET Copy Number and Intratumoural Subsets in Pleomorphic Lung Carcinoma: Implications for MET Directed Therapy in NSCLC, Publisher: ELSEVIER SCIENCE INC, Pages: S430-S430, ISSN: 1556-0864

Conference paper

Zhang YZ, Adefila-Ideozu T, Bowman A, Januszewski A, Popat S, Jordan S, Robertus J, Rice A, Moffatt M, Cookson W, Nicholson Aet al., 2018, Differentiating Sarcomatoid Mesothelioma from Pleomorphic Carcinoma and Chest Wall Sarcoma Using GATA-3/MUC4/BAP1 IHC, Publisher: ELSEVIER SCIENCE INC, Pages: S758-S759, ISSN: 1556-0864

Conference paper

Garcia AD, Lidwien AMS, Bossers A, Inge MW, Schmitt H, Markus JE, Depner M, Mueller-Rompa S, Schmausser-Hechfellner E, Michael JC, Cookson W, Moffatt M, von Mutius E, Dick JHet al., 2018, Indoor airborne microbiota composition associated with asthma and atopy in rural children, 28th International Congress of the European-Respiratory-Society (ERS), Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Tregoning JS, Mallia P, Webber J, Gill SK, Trujillo-Torralbo, Calderazzo MA, Finney L, Bakhsoliani E, Farne H, Singanayagam A, Footitt J, Hewitt R, Kebadze, Aniscenko J, Padmanaban V, Molyneaux PL, Adcock, Barnes PJ, Ito K, Elkin SL, Kon OM, Cookson WO, MOffatt MF, Johnston SLet al., 2018, Role of airway glucose in bacterial infections in chronic obstructive pulmonary disease, Journal of Allergy and Clinical Immunology, Vol: 142, Pages: 815-823.e6, ISSN: 0091-6749

BackgroundPatients with chronic obstructive pulmonary disease (COPD) have increased susceptibility to respiratory tract infection, which contributes to disease progression and mortality, but mechanisms of increased susceptibility to infection remain unclear.ObjectivesThe aim of this study was to determine whether glucose concentrations were increased in airway samples (nasal lavage fluid, sputum, and bronchoalveolar lavage fluid) from patients with stable COPD and to determine the effects of viral infection on sputum glucose concentrations and how airway glucose concentrations relate to bacterial infection.MethodsWe measured glucose concentrations in airway samples collected from patients with stable COPD and smokers and nonsmokers with normal lung function. Glucose concentrations were measured in patients with experimentally induced COPD exacerbations, and these results were validated in patients with naturally acquired COPD exacerbations. Relationships between sputum glucose concentrations, inflammatory markers, and bacterial load were examined.ResultsSputum glucose concentrations were significantly higher in patients with stable COPD compared with those in control subjects without COPD. In both experimental virus-induced and naturally acquired COPD exacerbations, sputum and nasal lavage fluid glucose concentrations were increased over baseline values. There were significant correlations between sputum glucose concentrations and sputum inflammatory markers, viral load, and bacterial load. Airway samples with higher glucose concentrations supported more Pseudomonas aeruginosa growth in vitro.ConclusionsAirway glucose concentrations are increased in patients with stable COPD and further increased during COPD exacerbations. Increased airway glucose concentrations might contribute to bacterial infections in both patients with stable and those with exacerbated COPD. This has important implications for the development of nonantibiotic therapeutic strategies for the prev

Journal article

Willis-Owen SAG, Thompson AR, Kemp P, Moffatt MF, Polkey M, Cookson W, Natanek Set al., 2018, COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix, Scientific Reports, Vol: 8, ISSN: 2045-2322

Skeletal muscle dysfunction is a frequent extra-pulmonary manifestation of Chronic Obstructive Pulmonary Disease (COPD) with implications for both quality of life and survival. The underlying biology nevertheless remains poorly understood. We measured global gene transcription in the quadriceps using Affymetrix HuGene1.1ST arrays in an unselected cohort of 79 stable COPD patients in secondary care and 16 healthy age- and gender-matched controls. We detected 1,826 transcripts showing COPD-related variation. Eighteen exhibited ≥2fold changes (SLC22A3, FAM184B, CDKN1A, FST, LINC01405, MUSK, PANX1, ANKRD1, C12orf75, MYH1, POSTN, FRZB, TNC, ACTC1, LINC00310, MYH3, MYBPH and AREG). Thirty-one transcripts possessed previous reported evidence of involvement in COPD through genome-wide association, including FAM13A. Network analysis revealed a substructure comprising 6 modules of co-expressed genes. We identified modules with mitochondrial and extracellular matrix features, of which IDH2, a central component of the mitochondrial antioxidant pathway, and ABI3BP, a proposed switch between proliferation and differentiation, represent hubs respectively. COPD is accompanied by coordinated patterns of transcription in the quadriceps involving the mitochondria and extracellular matrix and including genes previously implicated in primary disease processes.

Journal article

Ahmed B, Cox MJ, Cuthbertson L, James PL, Cookson WOC, Davies JC, Moffatt MF, Bush Aet al., 2018, Comparison of the upper and lower airway microbiota in children with chronic lung diseases, PLoS ONE, Vol: 13, ISSN: 1932-6203

RationaleThe lower airway microbiota is important in normal immunological development and chronic lung diseases (CLDs). Young children cannot expectorate and because of the uncertainty whether upper airway samples reflect the lower airway microbiota, there have been few longitudinal paediatric studies to date.ObjectivesTo assess whether throat swabs (TS) and cough swabs (CS) are representative of the lower airway microbiota.MethodsTS, CS, bronchoalveolar lavage and bronchial brushings were prospectively collected from 49 children undergoing fibreoptic bronchoscopy for CLDs. Bacterial DNA was extracted and the 16S rRNA gene V4 region sequenced using the Illumina MiSeq.Results5.97 million high quality reads were obtained from 168 samples (47 TS, 37 CS, 42 BALF and 42 bronchial brushings). CS sequenced poorly. At a community level, no difference in alpha diversity (richness, evenness or Shannon Diversity Index) was seen between lower airway samples and TS (P > 0.05). Less than 6.31% of beta diversity variation related to sampling method for TS (P = 0.001). Variation between pathologies and individual patients was greater (20%, 54% respectively P ≤ 0.001) than between TS and lower airway samples. There was strong correlation in the relative abundance of genera between samples (r = 0.78, P < 0.001). Similarity between upper and lower airway samples was observed to be less for individuals where one sample type was dominated by a single organism.ConclusionsAt the community structure level, TS correlate with lower airway samples and distinguish between different CLDs. TS may be a useful sample for the study of the differences in longitudinal changes in the respiratory microbiota between different CLDs. Differences are too great however for TS to be used for clinical decision making.

Journal article

Willis-Owen SAG, Cookson WOC, Moffatt MF, 2018, The Genetics and Genomics of Asthma, ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 19, Vol: 19, Pages: 223-246, ISSN: 1527-8204

Journal article

Singanayagam A, Glanville N, Girkin J, Ching YM, Marcellini A, Porter J, Toussaint M, Walton R, Finney L, Julia A, Zhu J, Trujillo-Torralbo M, Calderazzo M, Grainge C, Loo S-L, Veerati PC, Pathinayake P, Nichol K, Reid A, James P, Solari R, Wark P, Knight D, Moffatt M, Cookson W, Edwards M, Mallia P, Bartlett N, Johnston SLet al., 2018, Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations, Nature Communications, Vol: 9, ISSN: 2041-1723

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-β reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/β receptor (IFNAR1−/−) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-β therapy may protect.

Journal article

Dunning J, Blankley S, Hoang LT, Cox M, Graham CM, James PL, Bloom CI, Chaussabel D, Banchereau J, Brett SJ, Moffatt MF, OGarra A, Openshaw PJMet al., 2018, Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza, Nature Immunology, Vol: 19, Pages: 625-635, ISSN: 1529-2916

Transcriptional profiles and host-response biomarkers are used increasingly to investigate the severity, subtype and pathogenesis of disease. We now describe whole-blood mRNA signatures and concentrations of local and systemic immunological mediators in 131 adults hospitalized with influenza, from whom extensive clinical and investigational data were obtained by MOSAIC investigators. Signatures reflective of interferon-related antiviral pathways were common up to day 4 of symptoms in patients who did not require mechanical ventilator support; in those who needed mechanical ventilation, an inflammatory, activated-neutrophil and cell-stress or death (‘bacterial’) pattern was seen, even early in disease. Identifiable bacterial co-infection was not necessary for this ‘bacterial’ signature but was able to enhance its development while attenuating the early ‘viral’ signature. Our findings emphasize the importance of timing and severity in the interpretation of host responses to acute viral infection and identify specific patterns of immune-system activation that might enable the development of novel diagnostic and therapeutic tools for severe influenza.

Journal article

Sugier P-E, Brossard M, Sarnowski C, Vaysse A, Morin A, Pain L, Margaritte-Jeannin P, Dizier M-H, Cookson WOCM, Lathrop M, Moffatt MF, Laprise C, Demenais F, Bouzigon Eet al., 2018, A novel role for ciliary function in atopy: ADGRV1 and DNAH5 interactions, JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Vol: 141, Pages: 1659-1667.e11, ISSN: 0091-6749

BackgroundAtopy, an endotype underlying allergic diseases, has a substantial genetic component.ObjectiveOur goal was to identify novel genes associated with atopy in asthma-ascertained families.MethodsWe implemented a 3-step analysis strategy in 3 data sets: the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) data set (1660 subjects), the Saguenay-Lac-Saint-Jean study data set (1138 subjects), and the Medical Research Council (MRC) data set (446 subjects). This strategy included a single nucleotide polymorphism (SNP) genome-wide association study (GWAS), the selection of related gene pairs based on statistical filtering of GWAS results, and text-mining filtering using Gene Relationships Across Implicated Loci and SNP-SNP interaction analysis of selected gene pairs.ResultsWe identified the 5q14 locus, harboring the adhesion G protein–coupled receptor V1 (ADGRV1) gene, which showed genome-wide significant association with atopy (rs4916831, meta-analysis P value = 6.8 × 10−9). Statistical filtering of GWAS results followed by text-mining filtering revealed relationships between ADGRV1 and 3 genes showing suggestive association with atopy (P ≤ 10−4). SNP-SNP interaction analysis between ADGRV1 and these 3 genes showed significant interaction between ADGRV1 rs17554723 and 2 correlated SNPs (rs2134256 and rs1354187) within the dynein axonemal heavy chain 5 (DNAH5) gene (Pmeta-int = 3.6 × 10−5 and 6.1 × 10−5, which met the multiple-testing corrected threshold of 7.3 × 10−5). Further conditional analysis indicated that rs2134256 alone accounted for the interaction signal with rs17554723.ConclusionBecause both DNAH5 and ADGRV1 contribute to ciliary function, this study suggests that ciliary dysfunction might represent a novel mechanism underlying atopy. Combining GWAS and epistasis analysis driven by statistical and knowledge-based evidence represents a promising approach for identifying ne

Journal article

Xu C-J, Soderhall C, Bustamante M, Baiz N, Gruzieva O, Gehring U, Mason D, Chatzi L, Basterrechea M, Llop S, Torrent M, Forastiere F, Fantini MP, Carlsen KCL, Haahtela T, Morin A, Kerkhof M, Merid SK, van Rijkom B, Jankipersadsing SA, Bonder MJ, Ballereau S, Vermeulen CJ, Aguirre-Gamboa R, de Jongste JC, Smit HA, Kumar A, Pershagen G, Guerra S, Garcia-Aymerich J, Greco D, Reinius L, McEachan RRC, Azad R, Hovland V, Mowinckel P, Alenius H, Fyhrquist N, Lemonnier N, Pellet J, Auffray C, van der Vlies P, van Diemen CC, Li Y, Wijmenga C, Netea MG, Moffatt MF, Cookson WOCM, Anto JM, Bousquet J, Laatikainen T, Laprise C, Carlsen K-H, Gori D, Porta D, Iniguez C, Bilbao JR, Kogevinas M, Wright J, Brunekreef B, Kere J, Nawijn MC, Annesi-Maesano I, Sunyer J, Melen E, Koppelman GHet al., 2018, DNA methylation in childhood asthma: an epigenome-wide meta-analysis, LANCET RESPIRATORY MEDICINE, Vol: 6, Pages: 379-388, ISSN: 2213-2600

BackgroundDNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma.MethodsWe did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4–5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4–16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2–56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1–79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting.Findings27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10−7) after meta-analysi

Journal article

Cowman SA, Jacob J, Hansell DM, Kelleher P, Wilson R, Cookson WOC, Moffatt MF, Loebinger MRet al., 2018, Whole blood gene expression in pulmonary non-tuberculous mycobacterial infection, American Journal of Respiratory Cell and Molecular Biology, Vol: 58, Pages: 510-518, ISSN: 1044-1549

RATIONALE: The factors predisposing towards the development of pulmonary non-tuberculous mycobacterial disease (pNTM) and influencing disease progression remain unclear. Impaired immune responses have been reported in individuals with pNTM but data are limited and inconsistent. OBJECTIVES: To use gene expression profiling to examine the host response to pNTM. METHODS: Microarray analysis of whole blood gene expression was performed on 25 subjects with pNTM and 27 uninfected controls with respiratory disease. Gene expression results were compared to phenotypic variables and survival data. MEASUREMENTS AND MAIN RESULTS: Compared with uninfected controls, pNTM was associated with down-regulation of 213 transcripts enriched for terms related to T cell signalling including IFNG. Reduced IFNG expression was associated with more severe CT changes and impaired lung function. Mortality was associated with the expression of transcripts related to the innate immune response and inflammation, whereas transcripts related to T and B cell function were associated with improved survival. CONCLUSIONS: These findings suggest that pNTM is associated with an aberrant immune response which may reflect an underlying propensity to infection, or result from NTM infection itself. There were important differences in the immune response associated with survival and mortality in pNTM.

Journal article

Margaritte-Jeannin P, Babron M-C, Laprise C, Lavielle N, Sarnowski C, Brossard M, Moffatt M, Gagne-Ouellet V, Etcheto A, Lathrop M, Just J, Cookson WO, Bouzigon E, Demenais F, Dizier M-Het al., 2018, The COL5A3 and MMP9 genes interact in eczema susceptibility, Annual Meeting of the International-Genetic-Epidemiology-Society (IGES), Publisher: WILEY, Pages: 297-305, ISSN: 0954-7894

Conference paper

Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JSet al., 2018, Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota, FRONTIERS IN IMMUNOLOGY, Vol: 9, ISSN: 1664-3224

Alterations in the composition of the gut microbiota have profound effects on human health. Consequently, there is great interest in identifying, characterizing, and understanding factors that initiate these changes. Despite their high prevalence, studies have only recently begun to investigate how viral lung infections have an impact on the gut microbiota. There is also considerable interest in whether the gut microbiota could be manipulated during vaccination to improve efficacy. In this highly controlled study, we aimed to establish the effect of viral lung infection on gut microbiota composition and the gut environment using mouse models of common respiratory pathogens respiratory syncytial virus (RSV) and influenza virus. This was then compared to the effect of live attenuated influenza virus (LAIV) vaccination. Both RSV and influenza virus infection resulted in significantly altered gut microbiota diversity, with an increase in Bacteroidetes and a concomitant decrease in Firmicutes phyla abundance. Although the increase in the Bacteroidetes phylum was consistent across several experiments, differences were observed at the family and operational taxonomic unit level. This suggests a change in gut conditions after viral lung infection that favors Bacteroidetes outgrowth but not individual families. No change in gut microbiota composition was observed after LAIV vaccination, suggesting that the driver of gut microbiota change is specific to live viral infection. Viral lung infections also resulted in an increase in fecal lipocalin-2, suggesting low-grade gut inflammation, and colonic Muc5ac levels. Owing to the important role that mucus plays in the gut environment, this may explain the changes in microbiota composition observed. This study demonstrates that the gut microbiota and the gut environment are altered following viral lung infections and that these changes are not observed during vaccination. Whether increased mucin levels and gut inflammation drive, or

Journal article

Zhang Y, Poobalasingam T, Yates LL, Walker SA, Taylor MS, Chessum L, harrison J, Tsaprouni L, Adcock IM, Lloyd CM, Cookson WO, Moffatt MF, Dean CHet al., 2018, Manipulation of Dipeptidylpeptidase 10 in mouse and human in vivo and in vitro models indicates a protective role in asthma, Disease Models and Mechanisms, Vol: 11, ISSN: 1754-8403

We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the β-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies.

Journal article

Nastase A, Gennatas S, Mandal A, Liu K, Edwards M, Morris-Rosendahl D, Rintoul R, Lim E, Anbunathan H, Popat S, Lathrop M, Nicholson A, Moffatt M, Bowcock AM, Cookson Wet al., 2018, Targeted next-generation sequencing of malignant pleural mesothelioma identifies recurrent NRAS oncogene mutations, 16th Annual British Thoracic Oncology Group Conference 2018, Publisher: ELSEVIER IRELAND LTD, Pages: S26-S26, ISSN: 0169-5002

Conference paper

Mandal A, Gennatas S, Liu K, Nastase A, Edwards M, Morris-Rosendahl D, Rintoul R, Lim E, Anbunathan H, Popat S, Lathrop M, Nicholson AG, Bowcockl AM, Moffatt M, Cookson Wet al., 2018, Copy number variations in malignant pleural mesothelioma reveal novel regions of genomic imbalances, Publisher: ELSEVIER IRELAND LTD, Pages: S27-S27, ISSN: 0169-5002

Conference paper

Cuthbertson L, Craven V, Bingle L, Cookson WOCM, Everard ML, Moffatt MFet al., 2017, The impact of persistent bacterial bronchitis on the pulmonary microbiome of children., PLoS ONE, Vol: 12, ISSN: 1932-6203

INTRODUCTION: Persistent bacterial bronchitis (PBB) is a leading cause of chronic wet cough in young children. This study aimed to characterise the respiratory bacterial microbiota of healthy children and to assess the impact of the changes associated with the development of PBB. Blind, protected brushings were obtained from 20 healthy controls and 24 children with PBB, with an additional directed sample obtained from PBB patients. DNA was extracted, quantified using a 16S rRNA gene quantitative PCR assay prior to microbial community analysis by 16S rRNA gene sequencing. RESULTS: No significant difference in bacterial diversity or community composition (R2 = 0.01, P = 0.36) was observed between paired blind and non-blind brushes, showing that blind brushings are a valid means of accessing the airway microbiota. This has important implications for collecting lower respiratory samples from healthy children. A significant decrease in bacterial diversity (P < 0.001) and change in community composition (R2 = 0.08, P = 0.004) was observed among controls, in comparison with patients. Bacterial communities within patients with PBB were dominated by Proteobacteria, and indicator species analysis showed that Haemophilus and Neisseria were significantly associated with the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not identified by standard routine clinical culture. CONCLUSION: The bacteria present in the lungs of patients with PBB were less diverse in terms of richness and evenness. The results validate the clinical diagnosis, and suggest that more attention to bacterial communities in children with chronic cough may lead to more rapid recognition of this condition with earlier treatment and reduction in disease burden.

Journal article

Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmüller J, Ang W, Barr RG, Beaty TH, Becker AB, Beilby J, Bisgaard H, Bjornsdottir US, Bleecker E, Bønnelykke K, Boomsma DI, Bouzigon E, Brightling CE, Brossard M, Brusselle GG, Burchard E, Burkart KM, Bush A, Chan-Yeung M, Chung KF, Couto Alves A, Curtin JA, Custovic A, Daley D, de Jongste JC, Del-Rio-Navarro BE, Donohue KM, Duijts L, Eng C, Eriksson JG, Farrall M, Fedorova Y, Feenstra B, Ferreira MA, Australian Asthma Genetics Consortium AAGC collaborators, Freidin MB, Gajdos Z, Gauderman J, Gehring U, Geller F, Genuneit J, Gharib SA, Gilliland F, Granell R, Graves PE, Gudbjartsson DF, Haahtela T, Heckbert SR, Heederik D, Heinrich J, Heliövaara M, Henderson J, Himes BE, Hirose H, Hirschhorn JN, Hofman A, Holt P, Hottenga J, Hudson TJ, Hui J, Imboden M, Ivanov V, Jaddoe VWV, James A, Janson C, Jarvelin M-R, Jarvis D, Jones G, Jonsdottir I, Jousilahti P, Kabesch M, Kähönen M, Kantor DB, Karunas AS, Khusnutdinova E, Koppelman GH, Kozyrskyj AL, Kreiner E, Kubo M, Kumar R, Kumar A, Kuokkanen M, Lahousse L, Laitinen T, Laprise C, Lathrop M, Lau S, Lee Y-A, Lehtimäki T, Letort S, Levin AM, Li G, Liang L, Loehr LR, London SJ, Loth DW, Manichaikul A, Marenholz I, Martinez FJ, Matheson MC, Mathias RA, Matsumoto K, Mbarek H, McArdle WL, Melbye M, Melén E, Meyers D, Michel S, Mohamdi H, Musk AW, Myers RA, Nieuwenhuis MAE, Noguchi E, O'Connor GT, Ogorodova LM, Palmer CD, Palotie A, Park JE, Pennell CE, Pershagen G, Polonikov A, Postma DS, Probst-Hensch N, Puzyrev VP, Raby BA, Raitakari OT, Ramasamy A, Rich SS, Robertson CF, Romieu I, Salam MT, Salomaa V, Schlünssen V, Scott R, Selivanova PA, Sigsgaard T, Simpson A, Siroux V, Smith LJ, Solodilova M, Standl M, Stefansson K, Strachan DP, Stricker BH, Takahashi A, Thompson PJ, Thorleifsson G, Thorsteinsdottir U, Tiesler CMT, Torgerson DG, Tsunoda T, Uitterlinden AG, van der Valk RJP, Vaysse A, Vedantam S, von Berg A, von Mutius E, Vonk JM, Waage J, Wareham NJ, Weiss STet al., 2017, Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks., Nature Genetics, Vol: 50, Pages: 42-53, ISSN: 1061-4036

We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known asthma loci, established asthma associations at two loci previously implicated in the comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large overlaps in genetic variants with autoimmune and inflammatory diseases. The enrichment in enhancer marks at asthma risk loci, especially in immune cells, suggested a major role of these loci in the regulation of immunologically related mechanisms.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00457382&limit=30&person=true