Imperial College London

Emeritus ProfessorMichaelRowan-Robinson

Faculty of Natural SciencesDepartment of Physics

Distinguished Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 7530m.rrobinson Website

 
 
//

Location

 

1011Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

320 results found

Rowan-Robinson M, 2019, More Things in the Heavens: How Infrared Astronomy Is Expanding Our View of the Universe, NATURE, Vol: 570, Pages: 443-+, ISSN: 0028-0836

Journal article

Clements DL, Rowan-Robinson M, Pearson C, Afonso J, Labouteiller V, Farrah D, Efstathiou A, Greenslade J, Wang Let al., 2019, AKARI and IRAS: From beam corrections to SEDs, Publications of the Astronomical Society of Japan (PASJ), Vol: 71, ISSN: 2053-051X

There is significant scientific value to be gained from combining AKARI fluxes with data at other far-infrared (IR) wavelengths from the Infrared Astronomical Satellite (IRAS) and Herschel missions. To be able to do this we must ensure that there are no systematic differences between the data sets that need to be corrected before the fluxes are compatible with each other. One such systematic effect identified in the Bright Source Catalog version 1 (BSCv1) data is the issue of beam corrections. We determine these for the BSC version 2 (BSCv2) data by correlating ratios of appropriate IRAS and AKARI bands with the difference in 2 Micron All Sky Survey (2MASS) J-band extended and point source magnitudes for sources cross-matched between the IRAS Faint Source Catalog (FSC), AKARI BSCv2 and 2MASS catalogs. We find significant correlations (p ≪ 10 −13) indicating that beam corrections are necessary in the 65 and 90 μm bands. We then use these corrected fluxes to supplement existing data in spectral energy distribution (SED) fits for ultraluminous infrared galaxies (ULIRGs) in the Herschel ULIRG Survey (HERUS). The addition of AKARI fluxes makes little difference to the results of simple (T, β) fits to the SEDs of these sources, though there is a general decrease in reduced χ2 values. The utility of the extra AKARI data, however, is in allowing physically more realistic SED models with more parameters to be fitted to the data. We also extend our analysis of beam correction issues in the AKARI data by examining the Herschel Reference Sample (HRS) galaxies, which have Herschel photometry from 100 to 500 μm and which are more spatially extended than the HERUS ULIRGs. 34 of the HRS sources have good Herschel SEDs and matching data from AKARI. This investigation finds that our simple 2MASS-based beam correction scheme is inadequate for these larger and more complex sources. There are also indications that additional beam corrections at 140 and

Journal article

Rowan-Robinson M, Wang L, Farrah D, Rigopoulou D, Gruppioni C, Vaccari M, Marchetti L, Clements DL, Pearson WJet al., 2018, Extreme submillimetre starburst galaxies, Astronomy and Astrophysics, Vol: 619, ISSN: 0004-6361

We have used two catalogues, a Herschel catalogue selected at 500 μm (HerMES) and an IRAS catalogue selected at 60 μm (RIFSCz), to contrast the sky at these two wavelengths. Both surveys demonstrate the existence of “extreme” starbursts, with star-formation rates (SFRs) > 5000 M⊙ yr−1. The maximum intrinsic star-formation rate appears to be ~30 000 M⊙ yr−1. The sources with apparent SFR estimates higher than this are in all cases either lensed systems, blazars, or erroneous photometric redshifts. At redshifts between three and five, the time-scale for the Herschel galaxies to make their current mass of stars at their present rate of star formation is ~108 yr, so these galaxies are making a significant fraction of their stars in the current star-formation episode. Using dust mass as a proxy for gas mass, the Herschel galaxies at redshift three to five have gas masses comparable to their mass in stars. Of the 38 extreme starbursts in our Herschel survey for which we have more complete spectral energy distribution (SED) information, 50% show evidence for QSO-like optical emission, or exhibit AGN dust tori in the mid-infrared SEDs. In all cases however the infrared luminosity is dominated by a starburst component. We derive a mean covering factor for AGN dust as a function of redshift and derive black hole masses and black hole accretion rates. There is a universal ratio of black-hole mass to stellar mass in these high redshift systems of ~10−3, driven by the strong period of star-formation and black-hole growth at z = 1−5.

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Battye R, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Chluba J, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Désert F-X, Di Valentino E, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Farhang M, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Gauthier C, Gerbino M, Ghosh T, Giard M, Giraud-Héraud Y, Giusarma E, Gjerløw E, González-Nuevo J, Górski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hamann J, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huang Z, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihänen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lähteenmäki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marchini A, Maris M, Martin PG, Martinelli M, Martínez-González E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netteet al., 2016, Planck 2015 results. XIII. Cosmological parameters, Astronomy & Astrophysics, Vol: 594, ISSN: 1432-0746

This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Heavens A, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huang Z, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marchini A, Maris M, Martin PG, Martinelli M, Martinez-Gonzalez E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Narimani A, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Pearson TJ, Perdereau O, Peet al., 2016, Planck 2015 results XIV. Dark energy and modified gravity, ASTRONOMY & ASTROPHYSICS, Vol: 594, ISSN: 1432-0746

We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Basak S, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Gallin S, Ganga K, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piaceet al., 2016, Planck 2015 results XV. Gravitational lensing, Astronomy and Astrophysics, Vol: 594, ISSN: 0004-6361

We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

Journal article

Adam R, Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bertincourt B, Bielewicz P, Bock JJ, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Désert F-X, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Giraud-Héraud Y, Gjerløw E, González-Nuevo J, Górski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versillé S, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihänen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Leahy JP, Lellouch E, Leonardi R, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martínez-González E, Masi S, Matarrese S, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschênes M-A, Moneti A, Montier L, Moreno R, Morgante G, Mortlock D, Moss A, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Nørgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Pearson TJ, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentiniet al., 2016, Planck 2015 results VII. High Frequency Instrument data processing: Time-ordered information and beams, Astronomy & Astrophysics, Vol: 594, Pages: A7 - 1-A7 - 30, ISSN: 0004-6361

The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Désert F-X, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Feeney S, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Giard M, Giraud-Héraud Y, Gjerløw E, González-Nuevo J, Górski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihänen E, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lähteenmäki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martínez-González E, Masi S, Matarrese S, McEwen JD, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Nørgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Peiris HV, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Pierpaoliet al., 2016, Planck 2015 results XVIII. Background geometry and topology of the Universe, Astronomy & Astrophysics, Vol: 594, Pages: A18-A18, ISSN: 0004-6361

Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highestquality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance χrec), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius ℛi of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Δlnℒ > −5 relative to a simply-connected flat Planck best-fit model) are: ℛi > 0.97 χrec for the T3 cubic torus; and ℛi > 0.56 χrec for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, ℛi > 0.97 χrec at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of −0.10 ± 0.04

Journal article

Collaboration P, Ade PAR, Aghanim N, Argüeso F, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Beichman C, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Böhringer H, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Christensen PR, Clemens M, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, Bernardis PD, Rosa AD, Zotti GD, Delabrouille J, Désert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Giard M, Giraud-Héraud Y, Gjerløw E, González-Nuevo J, Górski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihänen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lähteenmäki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leahy JP, Leonardi R, León-Tavares J, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Marshall DJ, Martin PG, Martínez-González E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Negrello M, Netterfield CB, Nørgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pacet al., 2016, Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources, Astronomy & Astrophysics, Vol: 594, ISSN: 1432-0746

The Second Planck Catalogue of Compact Sources is a catalogue of sourcesdetected in single-frequency maps from the full duration of the Planck missionand supersedes previous versions of the Planck compact source catalogues. Itconsists of compact sources, both Galactic and extragalactic, detected over theentire sky. Compact sources detected in the lower frequency channels areassigned to the PCCS2, while at higher frequencies they are assigned to one oftwo sub-catalogues, the PCCS2 or PCCS2E, depending on their location on thesky. The first of these catalogues covers most of the sky and allows the userto produce subsamples at higher reliabilities than the target 80% integralreliability of the catalogue. The PCCS2E contains sources detected in skyregions where the diffuse emission makes it difficult to quantify thereliability of the detections. Both the PCCS2 and PCCS2E include polarizationmeasurements, in the form of polarized flux densities, or upper limits, andorientation angles for all seven polarization-sensitive Planck channels. Theimproved data-processing of the full-mission maps and their reduced noiselevels allow us to increase the number of objects in the catalogue, improvingits completeness for the target 80 % reliability as compared with the previousversions, the PCCS and ERCSC catalogues.

Journal article

Ade PAR, Aghanim N, Arnaud M, Arroja F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bondi JR, Borrillu J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Christensen PR, Churchl S, Clements DL, Colombi S, Colombo LPL, Combet C, Contreras D, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouillei J, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Frolov A, Galeotta S, Galli S, Ganga K, Gauthier C, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huang Z, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kim J, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martini PG, Martinez-Gonzalez E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munchmeyer M, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paciet al., 2016, Planck 2015 results XX. Constraints on inflation, Astronomy and Astrophysics, Vol: 594, ISSN: 0004-6361

We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By comb

Journal article

Adam R, Ade PAR, Aghanim N, Akrami Y, Alves MIR, Argüeso F, Arnaud M, Arroja F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Basak S, Battaglia P, Battaner E, Battye R, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bertincourt B, Bielewicz P, Bikmaev I, Bock JJ, Böhringer H, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burenin R, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carvalho P, Casaponsa B, Castex G, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Chluba J, Chon G, Christensen PR, Church S, Clemens M, Clements DL, Colombi S, Colombo LPL, Combet C, Comis B, Contreras D, Couchot F, Coulais A, Crill BP, Cruz M, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Désert F-X, Di Valentino E, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Eisenhardt PRM, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Fantaye Y, Farhang M, Feeney S, Fergusson J, Fernandez-Cobos R, Feroz F, Finelli F, Florido E, Forni O, Frailis M, Fraisse AA, Franceschet C, Franceschi E, Frejsel A, Frolov A, Galeotta S, Galli S, Ganga K, Gauthier C, Génova-Santos RT, Gerbino M, Ghosh T, Giard M, Giraud-Héraud Y, Giusarma E, Gjerløw E, González-Nuevo J, Górski KM, Grainge KJB, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Hanson D, Harrison DL, Heavens A, Helou G, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huang Z, Huffenberger KM, Hurier G, Ilić S, Jaffe AH, Jaffe TR, Jin T, Jones WC, Juvela M, Karakci A, Keihänen E, Keskitalo R, Khamitov I, Kiiveri K, Kim J, Kisner TS, Kneissl R, Knoche J, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lacasa F, Lagache G, Lähteenmäki A, Lamarre J-M, Langer M, Lasenby A, Lattanzi M, Lawrence CR, Leet al., 2016, Planck 2015 results. I. Overview of products and scientific results, Astronomy & Astrophysics, Vol: 594, ISSN: 1432-0746

The European Space Agency’s Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

Journal article

Rowan-Robinson M, Oliver S, Wang L, Farrah D, Clements DL, Gruppioni C, Marchetti L, Rigopoulou D, Vaccari Met al., 2016, The star formation rate density from z=1 to 6, Monthly Notices of the Royal Astronomical Society, Vol: 461, Pages: 1100-1111, ISSN: 0035-8711

We use 3035 Herschel-SPIRE 500 μm sources from 20.3 deg2 of sky in the HerMES Lockman, ES1 and XMM-LSS areas to estimate the star formation rate density at z = 0–6. 500 μm sources are associated first with 350 and 250 μm sources, and then with Spitzer 24 μm sources from the SWIRE photometric redshift catalogue. The infrared and submillimetre data are fitted with a set of radiative-transfer templates corresponding to cirrus (quiescent) and starburst galaxies. Lensing candidates are removed via a set of colour–colour and colour–redshift constraints. Star formation rates are found to extend from <1 to 20 000 M⊙ yr−1. Such high values were also seen in the all-sky IRAS Faint Source Survey. Star formation rate functions are derived in a series of redshift bins from 0 to 6, combined with earlier far-infrared estimates, where available, and fitted with a Saunders et al (1990) functional form. The star formation rate density as a function of redshift is derived and compared with other estimates. There is reasonable agreement with both infrared and ultraviolet estimates for z < 3, but we find higher star formation rate densities than ultraviolet estimates at z = 3–6. Given the considerable uncertainties in the submillimetre estimates, we cannot rule out the possibility that the ultraviolet estimates are correct. But the possibility that the ultraviolet estimates have seriously underestimated the contribution of dust-shrouded star formation can also not be excluded.

Journal article

Asboth V, Conley A, Sayers J, Bethermin M, Chapman SC, Clements DL, Cooray A, Dannerbauer H, Farrah D, Glenn J, Golwala SR, Halpern M, Ibar E, Ivison RJ, Maloney PR, Marques-Chaves R, Martinez-Navajas PI, Oliver SJ, Perez-Fournon I, Riechers DA, Rowan-Robinson M, Scott D, Siegel SR, Vieira JD, Viero M, Wang L, Wardlow J, Wheeler Jet al., 2016, HerMES: a search for high-redshift dusty galaxies in the HerMES Large Mode Survey - catalogue, number counts and early results., Monthly Notices of the Royal Astronomical Society, Vol: 462, Pages: 1989-2000, ISSN: 0035-8711

Selecting sources with rising flux densities towards longer wavelengths from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg2 of the Herschel Multi-tiered Extragalactic Survey (HerMES) Large Mode Survey and create a catalogue of 477 objects with SPIRE flux densities S500 > S350 > S250 and a 5σ cut-off S500 > 52 mJy. From this catalogue we determine that the total number of these ‘red’ sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We have obtained spectroscopic redshift measurements for two of our sources using the Atacama Large Millimeter/submillimeter Array. The redshifts z = 5.1 and 3.8 confirm that with our selection method we can indeed find high-redshift dusty star-forming galaxies.

Journal article

Marchetti L, Vaccari M, Franceschini A, Arumugam V, Aussel H, Bethermin M, Bock J, Boselli A, Buat V, Burgarella D, Clements DL, Conley A, Conversi L, Cooray A, Dowell CD, Farrah D, Feltre A, Glenn J, Griffin M, Hatziminaoglou E, Heinis S, Ibar E, Ivison RJ, Nguyen HT, O'Halloran B, Oliver SJ, Page MJ, Papageorgiou A, Pearson CP, Perez-Fournon I, Pohlen M, Rigopoulou D, Roseboom IG, Rowan-Robinson M, Schulz B, Scott D, Seymour N, Shupe DL, Smith AJ, Symeonidis M, Valtchanov I, Viero M, Wang L, Wardlow J, Xu CK, Zemcov Met al., 2015, The HerMES submillimetre local and low-redshift luminosity functions, Monthly Notices of the Royal Astronomical Society, Vol: 456, Pages: 1999-2023, ISSN: 1365-2966

We used wide-area surveys over 39 deg2 by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 μm. Within this redshift interval, we detected 7087 sources in five independent sky areas, ∼40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8–1000 μm) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L∗IR∝(1+z)6.0±0.4IR∗∝(1+z)6.0±0.4 and Φ∗IR∝(1+z)−2.1±0.4ΦIR∗∝(1+z)−2.1±0.4, L∗250∝(1+z)5.3±0.2250∗∝(1+z)5.3±0.2 and Φ∗250∝(1+z)−0.6±0.4Φ250∗∝(1+z)−0.6±0.4 estimated using the IR bolometric and the 250 μm LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local gala

Journal article

Rowan-Robinson M, Clements DL, 2015, Cold galaxies, MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Vol: 453, Pages: 2050-2057, ISSN: 0035-8711

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartelmann M, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bikmaev I, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burenin R, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Chon G, Christensen PR, Churazov E, Church S, Clements DL, Colombi S, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Democles J, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Feroz F, Ferragamo A, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Gilfanov M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Grainge KJB, Gratton S, Gregorio A, Groeneboom NE, Gruppuso A, Hansen FK, Hanson D, Harrison D, Hempel A, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Hurley-Walker N, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Li C, Liddle A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Mei S, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliet al., 2015, Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources, Astronomy & Astrophysics, Vol: 581, ISSN: 1432-0746

We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev–Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections.

Journal article

Ade PAR, Aghanim N, Ahmed Z, Aikin RW, Alexander KD, Arnaud M, Aumont J, Baccigalupi C, Banday AJ, Barkats D, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Benton SJ, Bernard J-P, Bersanelli M, Bielewicz P, Bischoff CA, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Brevik JA, Bucher M, Buder I, Bullock E, Burigana C, Butler RC, Buza V, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chary R-R, Chiang HC, Christensen PR, Colombo LPL, Combet C, Connors J, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dowell CD, Duband L, Ducout A, Dunkley J, Dupac X, Dvorkin C, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Filippini JP, Finelli F, Fliescher S, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerlow E, Golwala SR, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Halpern M, Hansen FK, Hanson D, Harrison DL, Hasselfield M, Helou G, Henrot-Versille S, Herranz D, Hildebrandt SR, Hilton GC, Hivon E, Hobson M, Holmes WA, Hovest W, Hristov VV, Huffenberger KM, Hui H, Hurier G, Irwin KD, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Karakci A, Karkare KS, Kaufman JP, Keating BG, Kefeli S, Keihanen E, Kernasovskiy SA, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kovac JM, Krachmalnicoff N, Kunz M, Kuo CL, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leitch EM, Leonardi R, Levrier F, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Lueker M, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Mason P, Matarrese S, Megerian KG, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitet al., 2015, Joint Analysis of BICEP2/Keck Array and Planck Data, Physical Review Letters, Vol: 114, ISSN: 1079-7114

Journal article

Rowan-Robinson M, Wang L, Wardlow J, Farrah D, Oliver S, Bock J, Clarke C, Clements D, Ibar E, Gonzalez-Solares E, Marchetti L, Scott D, Smith A, Vaccari M, Valtchanov Iet al., 2014, Detailed modelling of a large sample of <i>Herschel</i> sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs, MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Vol: 445, Pages: 3848-3861, ISSN: 0035-8711

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Bowyer JW, Bridges M, Bucher M, Burigana C, Cardoso J-E, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia E, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Haissinski J, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneiss R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matsumura T, Matthai E, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati E, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczet al., 2014, Planck 2013 results. VII. HFI time response and beams, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bemard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bemardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Gaier TC, Galeotta S, Galli S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Homtrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Kesldtalo R, Kiiveri K, Kisner TS, krieiss R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Laureijs RJ, Lawrence CR, Le Jeune M, Leach S, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marinucci D, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Menegoni E, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky Pet al., 2014, Planck 2013 results. XV. CMB power spectra and likelihood, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral i

Journal article

Ade PAR, Aghanim N, Alves MIR, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardos J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Dempsey JT, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Franceschi E, Fukui Y, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Handa T, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hily-Blant P, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffein B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Moore TJT, Morgante G, Morino J, Mortlock D, Munshi D, Murphy JA, Nakajima T, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviellon F, Novikov D, Novikov I, Okuda T, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoet al., 2014, Planck 2013 results. XIII. Galactic CO emission, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bowyer JW, Bridges M, Bucher M, Burigana C, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rose A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Girard D, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Herent O, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Le Jaune M, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Mandolesi N, Maris M, Marleau F, Marshall J, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Meinhold PR, Melchiorri A, Melot F, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, North C, Noviello F, Novikov D, Novikov I, Orieux F, Osborne S, Oxborrow CA, Paci F, Paganoet al., 2014, Planck 2013 results. VI. High frequency instrument data processing, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100−353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartelinann M, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J, Bersanelli M, Bielewicz P, Bikmaev I, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burenin R, Burigana C, Butier RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Chon G, Christensen PR, Churazov E, Church S, Clements DL, Colombi S, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouilie J, Delouis J-M, Democles J, Desert F-X, Dickinson C, Diego IM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Eisenhardt PRM, Ensslin TA, Eriksen HK, Feroz F, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Gilfanov M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Grainge KJB, Gratton S, Gregorio A, Groeneboom NE, Gruppuso A, Hansen FK, Hanson D, Harrison D, Hempel A, Elenrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Homstrup A, Hovest W, Huffenberger KM, Hurier G, Hurley-Walker N, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Laeache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Li C, Liddle A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Maino D, Mandolesi N, Maris M, Marshal DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Mei S, Meinhold PR, Meichiorri A, Melin J-B, Mendes L, Mennelia A, Miglet al., 2014, Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.

Journal article

Ade PAR, Aghanim N, Argueeso F, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Beelen A, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clemens M, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Negrello M, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini Ret al., 2014, Planck 2013 results. XXVIII. The Planck catalogue of compact sources, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the “nominal” mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30–857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from 32.88′ to 4.33′) than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected in at least two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Fabre O, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McEwen JD, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Peiris HV, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobet al., 2014, Planck 2013 results. XXVI. Background geometry and topology of the universe, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance χrec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ℛi of the largest sphere inscribed in topological domain (at log-likelihood-ratio Δln ℒ > −5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ℛi> 0.92χrec for the T3 cubic torus; ℛi> 0.71χrec for the T2 chimney; ℛi> 0.50χrec for the T1 slab; and in a positively curved Universe, ℛi> 1.03χrec for the d

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang L-Y, Chiang HC, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe TR, Jaffe AH, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Matthai F, Mazzotta P, McEwen JD, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Peiris HV, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Piet al., 2014, Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in the underlying strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as f10 at multipole ℓ = 10. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of Gμ/c2 < 1.5 × 10-7 and f10 < 0.015 at 95% confidence that can be improved to Gμ/c2 < 1.3 × 10-7 and f10 < 0.010 on inclusion of high-ℓ CMB data. For the Abelian-Higgs field theory model we find, GμAH/c2< 3.2 × 10-7 and f10 < 0.028. The marginalised likelihoods for f10 and in the f10–Ωbh2 plane are also presented. We have additionally obtained comparable constraints on f10 for models with semilocal strings and global textures. In terms of the effective defect energy scale these are somewhat weaker at Gμ/c2 < 1.1 × 10-6. We have made complementarity searches for the specific non-Gaussian signatures of cosmic strings, calibrating with all-sky Planck resolution CMB maps generated from networks of post-recombination strings. We have validated our non-Gaussian searches using these simulated maps in a Planck-realistic context, estimating sensitivities of up to ΔGμ/c2 ≈ 4 × 10-7. We have obtained upper limits on the string tension at 95% confidence of Gμ/c2 < 9.0 × 10-7 with modal bispectrum estimation and Gμ/c2 < 7.8 × 10-7 for real space searches with Minkowski functi

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Castex G, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Cruz M, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dobler G, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huey G, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Le Jeune M, Leach S, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mikkelsen K, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello Fet al., 2014, Planck 2013 results. XII. Diffuse component separation, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to ℓ = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β = −4 to − 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β< −3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colley J-M, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, O'Sullivan C, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentiniet al., 2014, Planck 2013 results. XIV. Zodiacal emission, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model – a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen through the telescope’s far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Calabrese E, Cappellini B, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Gaier TC, Galeotta S, Galli S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Haissinski J, Hamann J, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Laureijs RJ, Lawrence CR, Leach S, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Menegoni E, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoliet al., 2014, Planck 2013 results. XVI. Cosmological parameters, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (ℓ ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spe

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Basak S, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Dechelette T, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Ho S, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lavabre A, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Partridge B Pet al., 2014, Planck 2013 results. XVII. Gravitational lensing by large-scale structure, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00151423&limit=30&person=true