Imperial College London

ProfessorMatthewSanter

Faculty of EngineeringDepartment of Aeronautics

Professor of Aerospace Structures
 
 
 
//

Contact

 

+44 (0)20 7594 5117m.santer

 
 
//

Location

 

335City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Johnson:2017,
author = {Johnson, M and McCann, J and Santer, M and Baoyin, H and Gong, S},
publisher = {Japan Space Forum},
title = {On orbit validation of solar sailing control laws with thin-film spacecraft},
url = {http://hdl.handle.net/10044/1/44150},
year = {2017}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Many innovative approaches to solar sail mission and trajectory design have been proposed over the years, but very few ever have the opportunity to be validated on orbit with real spacecraft. Thin-Film Spacecraft/Lander/Rovers (TF-SLRs) are a new class of very low cost, low mass space vehicle which are ideal for inexpensively and quickly testing in flight new approaches to solar sailing. This paper describes using TF-SLR based micro solar sails to implement a generic solar sail test bed on orbit. TF-SLRs are high area-to-mass ratio (A/m) spacecraft developed for very low cost consumer and scientific deep space missions. Typically based on a 5 μm or thinner metalised substrate, they include an integrated avionics and payload system-on-chip (SoC) die bonded to the substrate with passive components and solar cells printed or deposited by Metal Organic Chemical Vapour Deposition (MOCVD). The avionics include UHF/S-band transceivers, processors, storage, sensors and attitude control provided by integrated magnetorquers and reflectivity control devices. Resulting spacecraft have a typical thickness of less than 50 μm, are 80 mm in diameter, and have a mass of less than 100 mg resulting in sail loads of less than 20 g/m2. TF-SLRs are currently designed for direct dispensing in swarms from free flying 0.5U Interplanetary CubeSats or dispensers attached to launch vehicles. Larger 160 mm, 320 mm and 640 mm diameter TF-SLRs utilizing a CubeSat compatible TWIST deployment mechanism that maintains the high A/m ratio are also under development. We are developing a mission to demonstrate the utility of these devices as a test bed for experimenting with a variety of mission designs and control laws. Batches of up to one hundred TF-SLRs will be released on earth escape trajectories, with each batch executing a heterogeneous or homogenous mixture of control laws and experiments. Up to four releases at different points in orbit are currently envisaged with experiments currently
AU - Johnson,M
AU - McCann,J
AU - Santer,M
AU - Baoyin,H
AU - Gong,S
PB - Japan Space Forum
PY - 2017///
TI - On orbit validation of solar sailing control laws with thin-film spacecraft
UR - http://hdl.handle.net/10044/1/44150
ER -