Imperial College London

Professor Molly Stevens

Faculty of EngineeringDepartment of Materials

Professor of Biomedical Materials and Regenerative Medicine



+44 (0)20 7594 6804m.stevens




208Royal School of MinesSouth Kensington Campus






BibTex format

author = {Morez, CY and Noseda, M and Abreu, Paiva M and Belian, E and Schneider, MD and Stevens, MM},
doi = {10.1016/j.biomaterials.2015.07.063},
journal = {Biomaterials},
pages = {94--104},
title = {Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues},
url = {},
volume = {70},
year = {2015}

RIS format (EndNote, RefMan)

AB - Generation of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has proven possible both in vitro and in vivo, the efficiency of the process remains extremely low. Here, we report a chemical-free technique in which topographical cues, more specifically parallel microgrooves, enhance the trans-differentiation of cardiac progenitors into cardiomyocyte-like cells. Using a lentivirus-mediated direct reprogramming strategy for expression of Myocardin, Tbx5, and Mef2c, we showed that the microgrooved substrate provokes an increase in histone H3 acetylation (AcH3), known to be a permissive environment for reprogramming by “stemness” factors, as well as stimulation of myocardin sumoylation, a post-translational modification essential to the transcriptional function of this key co-activator. These biochemical effects mimicked those of a pharmacological histone deacetylase inhibitor, valproic acid (VPA), and like VPA markedly augmented the expression of cardiomyocyte-specific proteins by the genetically engineered cells. No instructive effect was seen in cells unresponsive to VPA. In addition, the anisotropy resulting from parallel microgrooves induced cellular alignment, mimicking the native ventricular myocardium and augmenting sarcomere organization.
AU - Morez,CY
AU - Noseda,M
AU - Abreu,Paiva M
AU - Belian,E
AU - Schneider,MD
AU - Stevens,MM
DO - 10.1016/j.biomaterials.2015.07.063
EP - 104
PY - 2015///
SN - 1878-5905
SP - 94
TI - Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues
T2 - Biomaterials
UR -
UR -
VL - 70
ER -