Imperial College London

Professor Molly Stevens

Faculty of EngineeringDepartment of Materials

Professor of Biomedical Materials and Regenerative Medicine
 
 
 
//

Contact

 

+44 (0)20 7594 6804m.stevens

 
 
//

Location

 

208Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

423 results found

Penders J, Nagelkerke A, Cunnane EM, Pedersen S, Pence I, Coombes RC, Stevens Met al., 2021, Single particle automated Raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers, ACS Nano, Vol: 15, Pages: 18192-18205, ISSN: 1936-0851

Extracellular vesicles (EVs) secreted by cancer cells provide an important insight into cancer biology and could be leveraged to enhance diagnostics and disease monitoring. This paper details a high-throughput label-free extracellular vesicle analysis approach to study fundamental EV biology, toward diagnosis and monitoring of cancer in a minimally invasive manner and with the elimination of interpreter bias. We present the next generation of our single particle automated Raman trapping analysis─SPARTA─system through the development of a dedicated standalone device optimized for single particle analysis of EVs. Our visualization approach, dubbed dimensional reduction analysis (DRA), presents a convenient and comprehensive method of comparing multiple EV spectra. We demonstrate that the dedicated SPARTA system can differentiate between cancer and noncancer EVs with a high degree of sensitivity and specificity (>95% for both). We further show that the predictive ability of our approach is consistent across multiple EV isolations from the same cell types. Detailed modeling reveals accurate classification between EVs derived from various closely related breast cancer subtypes, further supporting the utility of our SPARTA-based approach for detailed EV profiling.

Journal article

Liu H, Hong F, Smith F, Goertz J, Ouldridge T, Stevens MM, Yan H, Šulc Pet al., 2021, Kinetics of RNA and RNA:DNA hybrid strand displacement, ACS Synthetic Biology, Vol: 10, Pages: 3066-3073, ISSN: 2161-5063

In nucleic acid nanotechnology, strand displacement is a widely used mechanism where one strand from a hybridized duplex is exchanged with an invading strand that binds to a toehold, a single-stranded region on the duplex. It is used to perform logic operations on a molecular level, initiate cascaded reactions, or even for in vivo diagnostics and treatments. While systematic experimental studies have been carried out to probe the kinetics of strand displacement in DNA with different toehold lengths, sequences, and mismatch positions, there has not been a comparable investigation of RNA or RNA-DNA hybrid systems. Here, we experimentally study how toehold length, toehold location (5' or 3' end of the strand), and mismatches influence the strand displacement kinetics. We observe reaction acceleration with increasing toehold length and placement of the toehold at the 5' end of the substrate. We find that mismatches closer to the interface of toehold and duplex slow down the reaction more than remote mismatches. A comparison of RNA and DNA displacement with hybrid displacement (RNA invading DNA or DNA invading RNA) is partly explainable by the thermodynamic stabilities of the respective toehold regions, but also suggests that the rearrangement from B-form to A-form helix in the case of RNA invading DNA might play a role in the kinetics.

Journal article

Wojciechowski JP, Stevens MM, 2021, BIOMATERIALS A dynamic duo, SCIENCE, Vol: 374, Pages: 825-826, ISSN: 0036-8075

Journal article

Nele V, Holme M, Rashid MH, Barriga HMG, Le TC, Thomas MR, Doutch JJ, Yarovsky I, Stevens MMet al., 2021, Design of lipid-based nanocarriers via cation modulation of ethanol-interdigitated lipid membranes, Langmuir: the ACS journal of surfaces and colloids, Vol: 37, Pages: 11909-11921, ISSN: 0743-7463

Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol–lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.

Journal article

Blakney AK, McKay PF, Hu K, Samnuan K, Jain N, Brown A, Thomas A, Rogers P, Polra K, Sallah H, Yeow J, Zhu Y, Stevens MM, Geall A, Shattock RJet al., 2021, Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines, Journal of Controlled Release, Vol: 338, Pages: 201-210, ISSN: 0168-3659

Self-amplifying RNA (saRNA) is a next-generation vaccine platform, but like all nucleic acids, requires a delivery vehicle to promote cellular uptake and protect the saRNA from degradation. To date, delivery platforms for saRNA have included lipid nanoparticles (LNP), polyplexes and cationic nanoemulsions; of these LNP are the most clinically advanced with the recent FDA approval of COVID-19 based-modified mRNA vaccines. While the effect of RNA on vaccine immunogenicity is well studied, the role of biomaterials in saRNA vaccine effectiveness is under investigated. Here, we tested saRNA formulated with either pABOL, a bioreducible polymer, or LNP, and characterized the protein expression and vaccine immunogenicity of both platforms. We observed that pABOL-formulated saRNA resulted in a higher magnitude of protein expression, but that the LNP formulations were overall more immunogenic. Furthermore, we observed that both the helper phospholipid and route of administration (intramuscular versus intranasal) of LNP impacted the vaccine immunogenicity of two model antigens (influenza hemagglutinin and SARS-CoV-2 spike protein). We observed that LNP administered intramuscularly, but not pABOL or LNP administered intranasally, resulted in increased acute interleukin-6 expression after vaccination. Overall, these results indicate that delivery systems and routes of administration may fulfill different delivery niches within the field of saRNA genetic medicines.

Journal article

Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjorner EK, Stevens MM, El-Andaloussi Set al., 2021, Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles, ACS NANO, Vol: 15, Pages: 13993-14021, ISSN: 1936-0851

Journal article

Higgins S, Nogiwa Valdez A, Stevens M, 2021, Considerations for implementing electronic laboratory notebooks in an academic research environment, Nature Protocols, ISSN: 1750-2799

As research becomes predominantly digitalised, scientists have the option of usingelectronic laboratory notebooks to record and access entries. These systems can morereadily meet volume, complexity, accessibility and preservation requirements than papernotebooks. Whilst the technology can yield many benefits these can only be realised bychoosing a system that properly fulfils the requirements of a given context. This reviewexplores the factors that should be considered when introducing electronic laboratorynotebooks to an academically focused research group. We cite pertinent studies anddiscuss our own experience implementing a system within a multi-disciplinary researchenvironment. We also consider how the required financial and time investment is sharedbetween individuals and institutions. Finally, we discuss how electronic laboratory notebooksfit into the broader context of research data management. This article is not a productreview; it provides a framework for both the initial consideration of an electronic laboratorynotebook and the evaluation of specific software packages.

Journal article

Nagelkerke A, Ojansivu M, van der Koog L, Whittaker T, Cunnane E, Silva AM, Dekker N, Stevens Met al., 2021, Extracellular vesicles for tissue repair and regeneration: evidence, challenges and opportunities, Advanced Drug Delivery Reviews, Vol: 175, Pages: 1-28, ISSN: 0169-409X

Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.

Journal article

Becce M, Kloeckner A, Higgins S, Penders J, Hachim Diaz DJ, Bashor CJ, Edwards A, Stevens Met al., 2021, Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli, Journal of Materials Chemistry B, Vol: 9, Pages: 4906-4914, ISSN: 2050-750X

We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria–nanostructure interfacing experiments.

Journal article

Chung JJ, Yoo J, Sum BST, Li S, Lee S, Kim TH, Li Z, Stevens MM, Georgiou TK, Jung Y, Jones JRet al., 2021, 3D printed porous methacrylate/silica hybrid scaffold for bone substitution, Advanced Healthcare Materials, Vol: 10, Pages: 1-13, ISSN: 2192-2640

Inorganic–organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica, which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO2 hybrid inks are printed with pore channels in the range of 100–200 µm. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions. Osteogenic and angiogenic properties of the hybrid scaffolds are shown using a rat calvarial defect model. Hybrid scaffolds with 40:60 inorganic:organic composition are able to instigate new vascularized bone formation within its pore channels and polarize macrophages toward M2 phenotype. 3D printing inorganic–organic hybrids with sophisticated polymer structure opens up possibilities to produce novel bone graft materials.

Journal article

Richards DA, Thomas M, Szijj P, Foote J, Chen Y, Nogueira CF, Chudasama V, Stevens Met al., 2021, Employing defined bioconjugates to generate chemically functionalised gold nanoparticles for in vitro diagnostic applications, Nanoscale, Vol: 13, Pages: 11921-11931, ISSN: 2040-3364

Novel methods for introducing chemical and biological functionality to the surface of gold nanoparticles serve to increase the utility of this class of nanomaterials across a range of applications. To date, methods for functionalising gold surfaces have relied upon uncontrollable non-specific adsorption, bespoke chemical linkers, or non-generalisable protein–protein interactions. Herein we report a versatile method for introducing functionality to gold nanoparticles by exploiting the strong interaction between chemically functionalised bovine serum albumin (f-BSA) and citrate-capped gold nanoparticles (AuNPs). We establish the generalisability of the method by introducing a variety of functionalities to gold nanoparticles using cheap, commercially available chemical linkers. The utility of this approach is further demonstrated through the conjugation of the monoclonal antibody Ontruzant to f-BSA–AuNPs using inverse electron-demand Diels–Alder (iEDDA) click chemistry, a hitherto unexplored chemistry for AuNP–IgG conjugation. Finally, we show that the AuNP–Ontruzant particles generated via f-BSA–AuNPs have a greater affinity for their target in a lateral flow format when compared to conventional physisorption, highlighting the potential of this technology for producing sensitive diagnostic tests.

Journal article

Guagliardo R, Herman L, Penders J, Zamborlin A, De Keersmaecker H, Van de Vyver T, Verstraeten S, Merckx P, Mingeot-Leclercq M-P, Echaide M, Pérez-Gil J, Stevens MM, De Smedt SC, Raemdonck Ket al., 2021, Surfactant protein B promotes cytosolic SiRNA delivery by adopting a virus-like mechanism of action, ACS Nano, Vol: 15, Pages: 8095-8109, ISSN: 1936-0851

RNA therapeutics are poised to revolutionize medicine. To unlock the full potential of RNA drugs, safe and efficient (nano)formulations to deliver them inside target cells are required. Endosomal sequestration of nanocarriers represents a major bottleneck in nucleic acid delivery. Gaining more detailed information on the intracellular behavior of RNA nanocarriers is crucial to rationally develop delivery systems with improved therapeutic efficiency. Surfactant protein B (SP-B) is a key component of pulmonary surfactant (PS), essential for mammalian breathing. In contrast to the general belief that PS should be regarded as a barrier for inhaled nanomedicines, we recently discovered the ability of SP-B to promote gene silencing by siRNA-loaded and lipid-coated nanogels. However, the mechanisms governing this process are poorly understood. The major objective of this work was to obtain mechanistic insights into the SP-B-mediated cellular delivery of siRNA. To this end, we combined siRNA knockdown experiments, confocal microscopy, and focused ion beam scanning electron microscopy imaging in an in vitro non-small-cell lung carcinoma model with lipid mixing assays on vesicles that mimic the composition of (intra)cellular membranes. Our work highlights a strong correlation between SP-B-mediated fusion with anionic endosomal membranes and cytosolic siRNA delivery, a mode of action resembling that of certain viruses and virus-derived cell-penetrating peptides. Building on these gained insights, we optimized the SP-B proteolipid composition, which dramatically improved delivery efficiency. Altogether, our work provides a mechanistic understanding of SP-B-induced perturbation of intracellular membranes, offering opportunities to fuel the rational design of SP-B-inspired RNA nanoformulations for inhalation therapy.

Journal article

Datta-Chaudhuri T, Zanos T, Chang EH, Olofsson PS, Bickel S, Bouton C, Grande D, Rieth L, Aranow C, Bloom O, Mehta AD, Civillico G, Stevens MM, Głowacki E, Bettinger C, Schüettler M, Puleo C, Rennaker R, Mohanta S, Carnevale D, Conde SV, Bonaz B, Chernoff D, Kapa S, Berggren M, Ludwig K, Zanos S, Miller L, Weber D, Yoshor D, Steinman L, Chavan SS, Pavlov VA, Al-Abed Y, Tracey KJet al., 2021, The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future., Bioelectronic Medicine, Vol: 7, ISSN: 2332-8886

There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here.

Journal article

Booth MA, Gowers SAN, Hersey M, Samper IC, Park S, Anikeeva P, Hashemi P, Stevens MM, Boutelle MGet al., 2021, Fiber-based electrochemical biosensors for monitoring pH and transient neurometabolic lactate., Analytical Chemistry, Vol: 93, Pages: 6646-6655, ISSN: 0003-2700

Developing tools that are able to monitor transient neurochemical dynamics is important to decipher brain chemistry and function. Multifunctional polymer-based fibers have been recently applied to monitor and modulate neural activity. Here, we explore the potential of polymer fibers comprising six graphite-doped electrodes and two microfluidic channels within a flexible polycarbonate body as a platform for sensing pH and neurometabolic lactate. Electrodes were made into potentiometric sensors (responsive to pH) or amperometric sensors (lactate biosensors). The growth of an iridium oxide layer made the fiber electrodes responsive to pH in a physiologically relevant range. Lactate biosensors were fabricated via platinum black growth on the fiber electrode, followed by an enzyme layer, making them responsive to lactate concentration. Lactate fiber biosensors detected transient neurometabolic lactate changes in an in vivo mouse model. Lactate concentration changes were associated with spreading depolarizations, known to be detrimental to the injured brain. Induced waves were identified by a signature lactate concentration change profile and measured as having a speed of ∼2.7 mm/min (n = 4 waves). Our work highlights the potential applications of fiber-based biosensors for direct monitoring of brain metabolites in the context of injury.

Journal article

Xianyu Y, Lin Y, Chen Q, Belessiotis-Richards A, Stevens M, Thomas Met al., 2021, Iodide-mediated rapid and sensitive surface etching of gold nanostars for biosensing, Angewandte Chemie International Edition, Vol: 60, Pages: 9891-9896, ISSN: 1433-7851

Iodide‐mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high‐energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase‐catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme‐modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.

Journal article

Sabnis A, Haggard K, Kloeckner A, Becce M, Evans L, Furniss R, Mavridou D, Stevens M, Murphy R, Davies J, Clarke T, Edwards Aet al., 2021, Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane, eLife, Vol: 10, Pages: 1-26, ISSN: 2050-084X

Colistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.

Journal article

Nelson M, Li S, Page SJ, Shi X, Lee PD, Stevens MM, Hanna JV, Jones JRet al., 2021, 3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes, Materials Science and Engineering: C, Vol: 123, Pages: 1-12, ISSN: 0928-4931

Inorganic/organic hybrids have co-networks of inorganic and organic components, with the aim of obtaining synergy of the properties of those components. Here, a silica-gelatin sol-gel hybrid “ink” was directly 3D printed to produce 3D grid-like scaffolds, using a coupling agent, 3-glycidyloxypropyl)trimethoxysilane (GPTMS), to form covalent bonds between the silicate and gelatin co-networks. Scaffolds were printed with 1 mm strut separation, but the drying method affected the final architecture and properties. Freeze drying produced <40 μm struts and large ~700 μm channels. Critical point drying enabled strut consolidation, with ~160 μm struts and ~200 μm channels, which improved mechanical properties. This architecture was critical to cellular response: when chondrocytes were seeded on the scaffolds with 200 μm wide pore channels in vitro, collagen Type II matrix was preferentially produced (negligible amount of Type I or X were observed), indicative of hyaline-like cartilaginous matrix formation, but when pore channels were 700 μm wide, Type I collagen was prevalent. This was supported by Sox9 and Aggrecan expression. The scaffolds have potential for regeneration of articular cartilage regeneration, particularly in sports medicine cases.

Journal article

Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens Met al., 2021, IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells, Scientific Reports, Vol: 11, Pages: 1-14, ISSN: 2045-2322

Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell–matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.

Journal article

Kim N, Kim E, Kim H, Thomas M, Najer A, Stevens Met al., 2021, Tumor-targeting cholesterol-decorated DNA nanoflowers for intracellular ratiometric aptasensing, Advanced Materials, Vol: 33, Pages: 1-10, ISSN: 0935-9648

Probing endogenous molecular profiles is of fundamental importance to understand cellular function and processes. Despite the promise of programmable nucleic‐acid‐based aptasensors across the breadth of biomolecular detection, target‐responsive aptasensors enabling intracellular detection are as of yet infrequently realized. Several challenges remain, including the difficulties in quantification/normalization of quencher‐based intensiometric signals, stability issues of the probe architecture, and complex sensor operations often necessitating extensive structural modeling. Here, the biomimetic crystallization‐empowered self‐assembly of a tumor‐targetable DNA–inorganic hybrid nanocomposite aptasensor is presented, which enables Förster resonance energy transfer (FRET)‐based quantitative interpretation of changes in the cellular target abundance. Leveraging the design programmability and high‐throughput fabrication of rolling circle amplification‐driven DNA nanoarchitecture, this designer platform offers a method to self‐assemble a robust nanosensor from a multifunctionality‐encoded template that includes a cell‐targeting aptamer, a ratiometric aptasensor, and a cholesterol‐decorating element. Taking prostate cancer cells and intracellular adenosine triphosphate molecules as a model system, a synergistic effect in the targeted delivery by cholesterol and aptamers, and the feasibility of quantitative intracellular aptasensing are demonstrated. It is envisioned that this approach provides a highly generalizable strategy across wide‐ranging target systems toward a biologically deliverable nanosensor that enables quantitative monitoring of the abundance of endogenous biomolecules.

Journal article

Horgan C, Bergholt MS, Thin MZ, Nagelkerke A, Kennedy R, Kalber TL, Stuckey D, Stevens Met al., 2021, Image-guided Raman spectroscopy probe-tracking for tumor margin delineation, Journal of Biomedical Optics, Vol: 26, Pages: 1-15, ISSN: 1083-3668

Significance: Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application.Aim: We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins.Approach: We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation.Results: Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model.Conclusions: Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries.

Journal article

Kit-Anan W, Mazo M, Wang BX, Leonardo V, Pence I, Gopal S, Gelmi A, Becce M, Chiappini C, Harding SE, Terracciano C, Stevens Met al., 2021, Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation, Biofabrication, Vol: 13, Pages: 1-16, ISSN: 1758-5082

Traditional in vitro bioengineering approaches whereby only individual biophysical cues are manipulated at any one time are highly inefficient, falling short when recapitulating the complexity of the cardiac environment. Multiple biophysical cues are present in the native myocardial niche and are essential during development, as well as in maintenance of adult cardiomyocyte (CM) phenotype in both health and disease. This study establishes a novel biofabrication workflow to study and manipulate hiPSC-CMs and to understand how these cells respond to a multiplexed biophysical environment, namely microscopic topography (3D shape resembling that of adult CM) and substrate stiffness, at a single cell level. Silicon masters were fabricated and developed to generate pillars of the desired 3D shapes, which would be used to mould the designed microwell arrays into a hydrogel. Polyacrylamide was modified with the incorporation of acrylic acid to provide a carboxylic group conjugation site for adhesion motifs, without comprising its capacity to modulate the stiffness. In this manner, individual parameters can be finely tuned independently within the hydrogel: the dimension of 3D shaped microwell and its stiffness. The design allows the platform to isolate single hiPSC-CMs to study solely biophysical cues in an absence of cell-cell physical interaction. Under physiologic-like physical conditions (3D shape resembling that of adult CM and 9.83 kPa substrate stiffness), isolated single hiPSC-CMs exhibit increased Cx-43 density, cell Peer reviewed version of the manuscript published in final form at Biofabrication (2020). membrane stiffness and calcium transient amplitude; co-expression of the subpopulation-related MYL2- MYL7 proteins; while displaying higher anisotropism in comparison to pathologic-like conditions (flat surface and 112 kPa substrate stiffness). This demonstrates that supplying a physiological or pathological microenvironment to an isolated single hiPSC-CM in absen

Journal article

Pinna A, Baghbaderani MT, Hernandez VV, Naruphontjirakul P, Li S, McFarlane T, Hachim D, Stevens MM, Porter AE, Jones JRet al., 2021, Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment, ACTA BIOMATERIALIA, Vol: 122, Pages: 365-376, ISSN: 1742-7061

Journal article

Lin Y, Penna M, Spicer CD, Higgins SG, Gelmi A, Kim N, Wang S-T, Wojciechowski JP, Pashuck ET, Yarovsky I, Stevens MMet al., 2021, High-throughput peptide derivatization toward supramolecular diversification in microtiter plates, ACS Nano, Vol: 15, Pages: 4034-4044, ISSN: 1936-0851

The evolution of life on earth eventually leads to the emergence of species with increased complexity and diversity. Similarly, evolutionary chemical space exploration in the laboratory is a key step to pursue the structural and functional diversity of supramolecular systems. Here, we present a powerful tool that enables rapid peptide diversification and employ it to expand the chemical space for supramolecular functions. Central to this strategy is the exploitation of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions to direct combinatorial synthesis of peptide arrays in microtiter plates under an open atmosphere. Taking advantage of this in situ library design, our results unambiguously deliver a fertile platform for creating a set of intriguing peptide functions including green fluorescent protein-like peptide emitters with chemically encoded emission colors, hierarchical self-assembly into nano-objects, and macroscopic hydrogels. This work also offers opportunities for quickly surveying the diversified peptide arrays and thereby identifying the structural factors that modulate peptide properties.

Journal article

Puetzer JL, Ma T, Sallent I, Gelmi A, Stevens Met al., 2021, Driving hierarchical collagen fiber formation for functional tendon, ligament and meniscus replacement, Biomaterials, Vol: 269, Pages: 1-10, ISSN: 0142-9612

Hierarchical collagen fibers are the primary source of strength in musculoskeletal tendons, ligaments, and menisci. It has remained a challenge to develop these large fibers in engineered replacements or in vivo after injury. The objective of this study was to investigate the ability of restrained cell-seeded high density collagen gels to drive hierarchical fiber formation for multiple musculoskeletal tissues. We found boundary conditions applied to high density collagen gels were capable of driving tenocytes, ligament fibroblasts, and meniscal fibrochondrocytes to develop native-sized hierarchical collagen fibers 20–40 μm in diameter. The fibers organize similar to bovine juvenile collagen with native fibril banding patterns and hierarchical fiber bundles 50–350 μm in diameter by 6 weeks. Mirroring fiber organization, tensile properties of restrained samples improved significantly with time, reaching ~1 MPa. Additionally, tendon, ligament, and meniscal cells produced significantly different sized fibers, different degrees of crimp, and different GAG concentrations, which corresponded with respective juvenile tissue. To our knowledge, these are some of the largest, most organized fibers produced to date in vitro. Further, cells produced tissue specific hierarchical fibers, suggesting this system is a promising tool to better understand cellular regulation of fiber formation to better stimulate it in vivo after injury.

Journal article

Li C, Ouyang L, Armstrong J, Stevens Met al., 2021, Advances in the fabrication of biomaterials for gradient tissue engineering, Trends in Biotechnology, Vol: 39, Pages: 150-164, ISSN: 0167-7799

Natural tissues and organs exhibit an array of spatial gradients, from the polar-ized neural tube during embryonic development to the osteochondral interfacepresent at articulating joints. The strong structure–function relationships inthese heterogeneous tissues have sparked intensive research into the develop-ment of methods that can replicate physiological gradients in engineered tis-sues. In this Review, we consider different gradients present in natural tissuesand discuss their critical importance in functional tissue engineering. Using thisbasis, we consolidate the existing fabrication methods into four categories: addi-tive manufacturing, component redistribution, controlled phase changes, andpostmodification. We have illustrated this with recent examples, highlightedprominent trends in thefield, and outlined a set of criteria and perspectives forgradient fabrication.

Journal article

Solanki A, Lali F, Autefage H, Agarwal S, Nommeots-Nomm A, Metcalfe A, Stevens M, Jones Jet al., 2021, Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications, Biomaterials Research, Vol: 25, ISSN: 2055-7124

BackgroundBioactive glasses are traditionally associated with bonding to bone through a hydroxycarbonate apatite (HCA) surface layer but the release of active ions is more important for bone regeneration. They are now being used to deliver ions for soft tissue applications, particularly wound healing. Cobalt is known to simulate hypoxia and provoke angiogenesis. The aim here was to develop new bioactive glass compositions designed to be scaffold materials to locally deliver pro-angiogenic cobalt ions, at a controlled rate, without forming an HCA layer, for wound healing applications.MethodsNew melt-derived bioactive glass compositions were designed that had the same network connectivity (mean number of bridging covalent bonds between silica tetrahedra), and therefore similar biodegradation rate, as the original 45S5 Bioglass. The amount of magnesium and cobalt in the glass was varied, with the aim of reducing or removing calcium and phosphate from the compositions. Electrospun poly(ε-caprolactone)/bioactive glass composites were also produced. Glasses were tested for ion release in dissolution studies and their influence on Hypoxia-Inducible Factor 1-alpha (HIF-1α) and expression of Vascular Endothelial Growth Factor (VEGF) from fibroblast cells was investigated.ResultsDissolution tests showed the silica rich layer differed depending on the amount of MgO in the glass, which influenced the delivery of cobalt. The electrospun composites delivered a more sustained ion release relative to glass particles alone. Exposing fibroblasts to conditioned media from these composites did not cause a detrimental effect on metabolic activity but glasses containing cobalt did stabilise HIF-1α and provoked a significantly higher expression of VEGF (not seen in Co-free controls).ConclusionsThe composite fibres containing new bioactive glass compositions delivered cobalt ions at a sustained rate, which could be mediated by the magnesium content of the glass. The dis

Journal article

Horgan C, Bergholt M, Nagelkerke A, Thin MZ, Pence IJ, Kauscher U, Kalber TL, Stuckey D, Stevens Met al., 2021, Integrated photodynamic Raman theranostic system for cancer diagnosis, treatment, and post-treatment molecular monitoring, Theranostics, Vol: 11, Pages: 2006-2019, ISSN: 1838-7640

Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies.Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics.Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time.Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics.

Journal article

Sero JE, Stevens MM, 2021, Nanoneedle-Based Materials for Intracellular Studies, BIO-NANOMEDICINE FOR CANCER THERAPY, Editors: Fontana, Santos, Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 191-219, ISBN: 978-3-030-58173-2

Book chapter

Potter M, Najer A, Kloeckner A, Zhang S, Holme MN, Nele V, Che J, Penders J, Saunders C, Doutch JJ, Edwards A, Ces O, Stevens Met al., 2020, Controlled dendrimersome nanoreactor system for localised hypochlorite-induced killing of bacteria, ACS Nano, Vol: 14, Pages: 17333-17353, ISSN: 1936-0851

Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (−OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as –OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating –OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.

Journal article

Maynard S, Gelmi A, Skaalure S, Pence I, Lee-Reeves C, Sero J, Whittaker T, Stevens Met al., 2020, Nanoscale molecular quantification of stem cell-hydrogel interactions, ACS Nano, Vol: 14, Pages: 17321-17332, ISSN: 1936-0851

A common approach to tailoring synthetic hydrogels for regenerative medicine applications involves incorporating RGD cell adhesion peptides, yet assessing the cellular response to engineered microenvironments at the nanoscale remains challenging. To date, no study has demonstrated how RGD concentration in hydrogels affects the presentation of individual cell surface receptors. Here we studied the interaction between human mesenchymal stem cells (hMSCs) and RGD-functionalized poly(ethylene glycol) hydrogels, by correlating macro- and nanoscale single-cell interfacial quantification techniques. We quantified RGD unbinding forces on a synthetic hydrogel using single cell atomic force spectroscopy, revealing that short-term binding of hMSCs was sensitive to RGD concentration. We also performed direct stochastic optical reconstruction microscopy (dSTORM) to quantify the molecular interactions between integrin α5β1 and a biomaterial, unexpectedly revealing that increased integrin clustering at the hydrogel-cell interface correlated with fewer available RGD binding sites. Our complementary, quantitative approach uncovered mechanistic insights into specific stem cell-hydrogel interactions, where dSTORM provides nanoscale sensitivity to RGD-dependent differences in cell surface localization of integrin α5β1. Our findings reveal that it is possible to precisely determine how peptide-functionalized hydrogels interact with cells at the molecular scale, thus providing a basis to fine-tune the spatial presentation of bioactive ligands.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00398347&limit=30&person=true