Imperial College London

Professor Molly Stevens

Faculty of EngineeringDepartment of Materials

Professor of Biomedical Materials and Regenerative Medicine
 
 
 
//

Contact

 

+44 (0)20 7594 6804m.stevens

 
 
//

Location

 

208Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

495 results found

Kotov NA, Akinwande D, Brinker CJ, Buriak JM, Chan WCW, Chen X, Chhowalla M, Chueh W, Glotzer SC, Gogotsi Y, Hersam MC, Ho D, Hu T, Javey A, Kagan CR, Kataoka K, Kim I-D, Lee S-T, Lee YH, Liz-Marzan LM, Millstone JE, Mulvaney P, Nel AE, Nordlander P, Parak WJ, Penner RM, Rogach AL, Salanne M, Schaak RE, Sood AK, Stevens M, Tsukruk V, Wee ATS, Voets I, Weil T, Weiss PSet al., 2022, Tanks and Truth, Publisher: AMER CHEMICAL SOC

Other

Hu K, McKay PF, Samnuan K, Najer A, Blakney AK, Che J, O'Driscoll G, Cihova M, Stevens MM, Shattock RJet al., 2022, Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity, Journal of Extracellular Vesicles, Vol: 11, ISSN: 2001-3078

A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.

Journal article

Geng H, Pedersen S, Ma Y, Haghighi T, Dai H, Howes PD, Stevens Met al., 2022, Noble metal nanoparticle biosensors: from fundamental studies towards point-of-care diagnostics, Accounts of Chemical Research, Vol: 55, Pages: 593-604, ISSN: 0001-4842

Noble metal nanoparticles (NMNPs) have become firmly established as effective agents to detect various biomolecules with extremely high sensitivity. This ability stems from the collective oscillation of free electrons and extremely large electric field enhancement under exposure to light, leading to various light–matter interactions such as localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering. A remarkable feature of NMNPs is their customizability by mechanisms such as particle etching, growth, and aggregation/dispersion, yielding distinct color changes and excellent opportunities for colorimetric biosensing in user-friendly assays and devices. They are readily functionalized with a large variety of capping agents and biomolecules, with resultant bioconjugates often possessing excellent biocompatibility, which can be used to quantitatively detect analytes from physiological fluids. Furthermore, they can possess excellent catalytic properties that can achieve significant signal amplification through mechanisms such as the catalytic transformation of colorless substrates to colored reporters. The various excellent attributes of NMNP biosensors have put them in the spotlight for developing high-performance in vitro diagnostic (IVD) devices that are particularly well-suited to mitigate the societal threat that infectious diseases pose. This threat continues to dominate the global health care landscape, claiming millions of lives annually. NMNP IVDs possess the potential to sensitively detect infections even at very early stages with affordable and field-deployable devices, which will be key to strengthening infectious disease management. This has been the major focal point of current research, with a view to new avenues for early multiplexed detection of infectious diseases with portable devices such as smartphones, especially in resource-limited settings.

Journal article

Bost JP, Ojansivu M, Munson MJ, Wesén E, Gallud A, Gupta D, Gustafsson O, Saher O, Rädler J, Higgins SG, Lehto T, Holme MN, Dahlén A, Engkvist O, Strömstedt P-E, Andersson S, Edvard Smith CI, Stevens MM, Esbjörner EK, Collén A, El Andaloussi Set al., 2022, Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides, Communications Biology, Vol: 5, ISSN: 2399-3642

The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs.

Journal article

Constantinou AP, Nele V, Doutch JJ, S Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TKet al., 2022, Investigation of the thermogelation of a promising biocompatible ABC triblock terpolymer and its comparison with pluronic F127, Macromolecules, Vol: 55, Pages: 1783-1799, ISSN: 0024-9297

Thermoresponsive polymers with the appropriate structure form physical networks upon changes in temperature, and they find utility in formulation science, tissue engineering, and drug delivery. Here, we report a cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w); OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate, respectively. This polymer is investigated in depth and is compared to its commercially available counterpart, Poloxamer P407 (Pluronic F127). To elucidate the differences in their macroscale gelling behavior, we investigate their nanoscale self-assembly by means of small-angle neutron scattering and simultaneously recording their rheological properties. Two different gelation mechanisms are revealed. The triblock copolymer inherently forms elongated micelles, whose length increases by temperature to form worm-like micelles, thus promoting gelation. In contrast, Pluronic F127’s micellization is temperature-driven, and its gelation is attributed to the close packing of the micelles. The gel structure is analyzed through cryogenic scanning and transmission electron microscopy. Ex vivo gelation study upon intracameral injections demonstrates excellent potential for its application to improve drug residence in the eye.

Journal article

Ouyang L, Wojciechowski A, Tang J, Guo Y, Stevens Met al., 2022, Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications, Advanced Healthcare Materials, Vol: 11, ISSN: 2192-2640

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks with cell densities up to 1 × 108 mL−1 in matrix. Consistent printability is achieved for a series of MTP bioinks based on different component ratios and matrix materials. After photo-crosslinking the matrix phase, the templated microgels dissociated and diffused under physiological conditions, resulting in corresponding micropores in situ. When embedding osteoblast-like cells in the matrix phase, the MTP bioinks support higher metabolic activity and more uniform mineral formation than bulk gel controls. The approach provides a facile strategy to engineer precise micropores in 3D printed structures to compensate for the limited resolution of current bioprinting approaches.

Journal article

Higgins S, Nogiwa Valdez A, Stevens M, 2022, Considerations for implementing electronic laboratory notebooks in an academic research environment, Nature Protocols, Vol: 17, Pages: 179-189, ISSN: 1750-2799

As research becomes predominantly digitalised, scientists have the option of usingelectronic laboratory notebooks to record and access entries. These systems can morereadily meet volume, complexity, accessibility and preservation requirements than papernotebooks. Whilst the technology can yield many benefits these can only be realised bychoosing a system that properly fulfils the requirements of a given context. This reviewexplores the factors that should be considered when introducing electronic laboratorynotebooks to an academically focused research group. We cite pertinent studies anddiscuss our own experience implementing a system within a multi-disciplinary researchenvironment. We also consider how the required financial and time investment is sharedbetween individuals and institutions. Finally, we discuss how electronic laboratory notebooksfit into the broader context of research data management. This article is not a productreview; it provides a framework for both the initial consideration of an electronic laboratorynotebook and the evaluation of specific software packages.

Journal article

Horgan CC, Jensen M, Nagelkerke A, St-Pierre J-P, Vercauteren T, Stevens MM, Bergholt MSet al., 2021, High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy., Analytical Chemistry, Vol: 93, Pages: 15850-15860, ISSN: 0003-2700

Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2-4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40-90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.

Journal article

Maynard S, Winter C, Cunnane E, Stevens Met al., 2021, Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization, Regenerative Engineering and Translational Medicine, Vol: 7, Pages: 533-547, ISSN: 2364-4133

Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue-engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell–material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of regenerative therapies is limited due to poor material integration, rapid clearance, and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell–material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, and the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine.Lay SummaryThe combination of biology, chemistry, materials science, and imaging technology affords exciting opportunities to better diagnose and treat a wide range of diseases. Recent advances in imaging technologies have enabled better understanding of the specific interactions that occur between human cells and their immediate surroundings in both health and disease. This biological understanding can be used to design smart therapies and tissue replacements that better mimic native tissue. Here, we discuss the advances in molecular biology and technologies that can be employed to functionalize materials and characterize their interaction with biological entities to facilita

Journal article

Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjorner EK, Stevens MM, El-Andaloussi Set al., 2021, Correction to “Delivery of oligonucleotide therapeutics: chemical modifications, lipid nanoparticles, and extracellular vesicles”, ACS Nano, Vol: 15, Pages: 18590-18591, ISSN: 1936-0851

Journal article

Penders J, Nagelkerke A, Cunnane EM, Pedersen S, Pence I, Coombes RC, Stevens Met al., 2021, Single particle automated Raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers, ACS Nano, Vol: 15, Pages: 18192-18205, ISSN: 1936-0851

Extracellular vesicles (EVs) secreted by cancer cells provide an important insight into cancer biology and could be leveraged to enhance diagnostics and disease monitoring. This paper details a high-throughput label-free extracellular vesicle analysis approach to study fundamental EV biology, toward diagnosis and monitoring of cancer in a minimally invasive manner and with the elimination of interpreter bias. We present the next generation of our single particle automated Raman trapping analysis─SPARTA─system through the development of a dedicated standalone device optimized for single particle analysis of EVs. Our visualization approach, dubbed dimensional reduction analysis (DRA), presents a convenient and comprehensive method of comparing multiple EV spectra. We demonstrate that the dedicated SPARTA system can differentiate between cancer and noncancer EVs with a high degree of sensitivity and specificity (>95% for both). We further show that the predictive ability of our approach is consistent across multiple EV isolations from the same cell types. Detailed modeling reveals accurate classification between EVs derived from various closely related breast cancer subtypes, further supporting the utility of our SPARTA-based approach for detailed EV profiling.

Journal article

Liu H, Hong F, Smith F, Goertz J, Ouldridge T, Stevens MM, Yan H, Šulc Pet al., 2021, Kinetics of RNA and RNA:DNA hybrid strand displacement, ACS Synthetic Biology, Vol: 10, Pages: 3066-3073, ISSN: 2161-5063

In nucleic acid nanotechnology, strand displacement is a widely used mechanism where one strand from a hybridized duplex is exchanged with an invading strand that binds to a toehold, a single-stranded region on the duplex. It is used to perform logic operations on a molecular level, initiate cascaded reactions, or even for in vivo diagnostics and treatments. While systematic experimental studies have been carried out to probe the kinetics of strand displacement in DNA with different toehold lengths, sequences, and mismatch positions, there has not been a comparable investigation of RNA or RNA-DNA hybrid systems. Here, we experimentally study how toehold length, toehold location (5' or 3' end of the strand), and mismatches influence the strand displacement kinetics. We observe reaction acceleration with increasing toehold length and placement of the toehold at the 5' end of the substrate. We find that mismatches closer to the interface of toehold and duplex slow down the reaction more than remote mismatches. A comparison of RNA and DNA displacement with hybrid displacement (RNA invading DNA or DNA invading RNA) is partly explainable by the thermodynamic stabilities of the respective toehold regions, but also suggests that the rearrangement from B-form to A-form helix in the case of RNA invading DNA might play a role in the kinetics.

Journal article

Wojciechowski JP, Stevens MM, 2021, BIOMATERIALS A dynamic duo, Publisher: AMER ASSOC ADVANCEMENT SCIENCE

Other

Nele V, Holme M, Rashid MH, Barriga HMG, Le TC, Thomas MR, Doutch JJ, Yarovsky I, Stevens MMet al., 2021, Design of lipid-based nanocarriers via cation modulation of ethanol-interdigitated lipid membranes, Langmuir: the ACS journal of surfaces and colloids, Vol: 37, Pages: 11909-11921, ISSN: 0743-7463

Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol–lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.

Journal article

Blakney AK, McKay PF, Hu K, Samnuan K, Jain N, Brown A, Thomas A, Rogers P, Polra K, Sallah H, Yeow J, Zhu Y, Stevens MM, Geall A, Shattock RJet al., 2021, Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines, Journal of Controlled Release, Vol: 338, Pages: 201-210, ISSN: 0168-3659

Self-amplifying RNA (saRNA) is a next-generation vaccine platform, but like all nucleic acids, requires a delivery vehicle to promote cellular uptake and protect the saRNA from degradation. To date, delivery platforms for saRNA have included lipid nanoparticles (LNP), polyplexes and cationic nanoemulsions; of these LNP are the most clinically advanced with the recent FDA approval of COVID-19 based-modified mRNA vaccines. While the effect of RNA on vaccine immunogenicity is well studied, the role of biomaterials in saRNA vaccine effectiveness is under investigated. Here, we tested saRNA formulated with either pABOL, a bioreducible polymer, or LNP, and characterized the protein expression and vaccine immunogenicity of both platforms. We observed that pABOL-formulated saRNA resulted in a higher magnitude of protein expression, but that the LNP formulations were overall more immunogenic. Furthermore, we observed that both the helper phospholipid and route of administration (intramuscular versus intranasal) of LNP impacted the vaccine immunogenicity of two model antigens (influenza hemagglutinin and SARS-CoV-2 spike protein). We observed that LNP administered intramuscularly, but not pABOL or LNP administered intranasally, resulted in increased acute interleukin-6 expression after vaccination. Overall, these results indicate that delivery systems and routes of administration may fulfill different delivery niches within the field of saRNA genetic medicines.

Journal article

Madekurozwa M, Bonneuil W, Frattolin J, Watson D, Moore A, Stevens M, Moore J, Mathiszig-Lee J, van Batenburg-Sherwood Jet al., 2021, A novel ventilator design for COVID-19 and resource-limited settings, Frontiers in Medical Technology, Vol: 3, Pages: 1-20, ISSN: 2673-3129

There has existed a severe ventilator deficit in much of the world for many years, due in part to the high cost and complexity of traditional ICU ventilators. This was highlighted and exacerbated by the emergence of the COVID-19 pandemic, during which the increase in ventilator production rapidly over ran the global supply chains for components. In response, we propose a new approach to ventilator design that meets the performance requirements for COVID-19 patients, while using components that minimise interference with the existing ventilator supply chains. The majority of current ventilator designs use proportional valves and flow sensors, which remainin short supply over a year into the pandemic. In the proposed design, the core components are on-off valves. Unlike proportional valves, on-off valves are widely available,but accurate control of ventilation using on-off valves is not straight forward. Our proposed solution combines four on-of 0valves, a two-litre reservoir, an oxygen sensor and two pressure sensors. Benchtop testing of a prototype was performed with a commercially available flow analyser and test lungs. We investigated the accuracy and precision of the prototype using both compressed gas supplies and a portable oxygen concentrator, and demonstrated the long-term durability over 15 days. The precision and accuracy of ventilation parameters were within the ranges specified in international guidelines in all tests.A numerical model of the system was developed and validated against experimental data. The model was used to determine usable ranges of valve flow coefficients to increase supply chain flexibility. This new design provides the performance necessary for the majority of patients that require ventilation. Applications include COVID-19 as well as pneumonia, influenza, and tuberculosis, which remain major causes of mortality in low and middleincome countries.The robustness, energy efficiency, ease of maintenance, price and availability of on-off

Journal article

Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjorner EK, Stevens MM, El-Andaloussi Set al., 2021, Delivery of oligonucleotide therapeutics: chemical modifications, lipid nanoparticles, and extracellular vesicles, ACS Nano, Vol: 15, Pages: 13993-14021, ISSN: 1936-0851

Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15–30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, “endosomal escape” remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.

Journal article

Nagelkerke A, Ojansivu M, van der Koog L, Whittaker T, Cunnane E, Silva AM, Dekker N, Stevens Met al., 2021, Extracellular vesicles for tissue repair and regeneration: evidence, challenges and opportunities, Advanced Drug Delivery Reviews, Vol: 175, Pages: 1-28, ISSN: 0169-409X

Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.

Journal article

Becce M, Kloeckner A, Higgins S, Penders J, Hachim Diaz DJ, Bashor CJ, Edwards A, Stevens Met al., 2021, Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli, Journal of Materials Chemistry B, Vol: 9, Pages: 4906-4914, ISSN: 2050-750X

We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria–nanostructure interfacing experiments.

Journal article

Chung JJ, Yoo J, Sum BST, Li S, Lee S, Kim TH, Li Z, Stevens MM, Georgiou TK, Jung Y, Jones JRet al., 2021, 3D printed porous methacrylate/silica hybrid scaffold for bone substitution, Advanced Healthcare Materials, Vol: 10, Pages: 1-13, ISSN: 2192-2640

Inorganic–organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica, which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO2 hybrid inks are printed with pore channels in the range of 100–200 µm. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions. Osteogenic and angiogenic properties of the hybrid scaffolds are shown using a rat calvarial defect model. Hybrid scaffolds with 40:60 inorganic:organic composition are able to instigate new vascularized bone formation within its pore channels and polarize macrophages toward M2 phenotype. 3D printing inorganic–organic hybrids with sophisticated polymer structure opens up possibilities to produce novel bone graft materials.

Journal article

Richards DA, Thomas M, Szijj P, Foote J, Chen Y, Nogueira CF, Chudasama V, Stevens Met al., 2021, Employing defined bioconjugates to generate chemically functionalised gold nanoparticles for in vitro diagnostic applications, Nanoscale, Vol: 13, Pages: 11921-11931, ISSN: 2040-3364

Novel methods for introducing chemical and biological functionality to the surface of gold nanoparticles serve to increase the utility of this class of nanomaterials across a range of applications. To date, methods for functionalising gold surfaces have relied upon uncontrollable non-specific adsorption, bespoke chemical linkers, or non-generalisable protein–protein interactions. Herein we report a versatile method for introducing functionality to gold nanoparticles by exploiting the strong interaction between chemically functionalised bovine serum albumin (f-BSA) and citrate-capped gold nanoparticles (AuNPs). We establish the generalisability of the method by introducing a variety of functionalities to gold nanoparticles using cheap, commercially available chemical linkers. The utility of this approach is further demonstrated through the conjugation of the monoclonal antibody Ontruzant to f-BSA–AuNPs using inverse electron-demand Diels–Alder (iEDDA) click chemistry, a hitherto unexplored chemistry for AuNP–IgG conjugation. Finally, we show that the AuNP–Ontruzant particles generated via f-BSA–AuNPs have a greater affinity for their target in a lateral flow format when compared to conventional physisorption, highlighting the potential of this technology for producing sensitive diagnostic tests.

Journal article

Guagliardo R, Herman L, Penders J, Zamborlin A, De Keersmaecker H, Van de Vyver T, Verstraeten S, Merckx P, Mingeot-Leclercq M-P, Echaide M, Pérez-Gil J, Stevens MM, De Smedt SC, Raemdonck Ket al., 2021, Surfactant protein B promotes cytosolic SiRNA delivery by adopting a virus-like mechanism of action, ACS Nano, Vol: 15, Pages: 8095-8109, ISSN: 1936-0851

RNA therapeutics are poised to revolutionize medicine. To unlock the full potential of RNA drugs, safe and efficient (nano)formulations to deliver them inside target cells are required. Endosomal sequestration of nanocarriers represents a major bottleneck in nucleic acid delivery. Gaining more detailed information on the intracellular behavior of RNA nanocarriers is crucial to rationally develop delivery systems with improved therapeutic efficiency. Surfactant protein B (SP-B) is a key component of pulmonary surfactant (PS), essential for mammalian breathing. In contrast to the general belief that PS should be regarded as a barrier for inhaled nanomedicines, we recently discovered the ability of SP-B to promote gene silencing by siRNA-loaded and lipid-coated nanogels. However, the mechanisms governing this process are poorly understood. The major objective of this work was to obtain mechanistic insights into the SP-B-mediated cellular delivery of siRNA. To this end, we combined siRNA knockdown experiments, confocal microscopy, and focused ion beam scanning electron microscopy imaging in an in vitro non-small-cell lung carcinoma model with lipid mixing assays on vesicles that mimic the composition of (intra)cellular membranes. Our work highlights a strong correlation between SP-B-mediated fusion with anionic endosomal membranes and cytosolic siRNA delivery, a mode of action resembling that of certain viruses and virus-derived cell-penetrating peptides. Building on these gained insights, we optimized the SP-B proteolipid composition, which dramatically improved delivery efficiency. Altogether, our work provides a mechanistic understanding of SP-B-induced perturbation of intracellular membranes, offering opportunities to fuel the rational design of SP-B-inspired RNA nanoformulations for inhalation therapy.

Journal article

Datta-Chaudhuri T, Zanos T, Chang EH, Olofsson PS, Bickel S, Bouton C, Grande D, Rieth L, Aranow C, Bloom O, Mehta AD, Civillico G, Stevens MM, Głowacki E, Bettinger C, Schüettler M, Puleo C, Rennaker R, Mohanta S, Carnevale D, Conde SV, Bonaz B, Chernoff D, Kapa S, Berggren M, Ludwig K, Zanos S, Miller L, Weber D, Yoshor D, Steinman L, Chavan SS, Pavlov VA, Al-Abed Y, Tracey KJet al., 2021, The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future., Bioelectronic Medicine, Vol: 7, ISSN: 2332-8886

There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here.

Journal article

Booth MA, Gowers SAN, Hersey M, Samper IC, Park S, Anikeeva P, Hashemi P, Stevens MM, Boutelle MGet al., 2021, Fiber-based electrochemical biosensors for monitoring pH and transient neurometabolic lactate., Analytical Chemistry, Vol: 93, Pages: 6646-6655, ISSN: 0003-2700

Developing tools that are able to monitor transient neurochemical dynamics is important to decipher brain chemistry and function. Multifunctional polymer-based fibers have been recently applied to monitor and modulate neural activity. Here, we explore the potential of polymer fibers comprising six graphite-doped electrodes and two microfluidic channels within a flexible polycarbonate body as a platform for sensing pH and neurometabolic lactate. Electrodes were made into potentiometric sensors (responsive to pH) or amperometric sensors (lactate biosensors). The growth of an iridium oxide layer made the fiber electrodes responsive to pH in a physiologically relevant range. Lactate biosensors were fabricated via platinum black growth on the fiber electrode, followed by an enzyme layer, making them responsive to lactate concentration. Lactate fiber biosensors detected transient neurometabolic lactate changes in an in vivo mouse model. Lactate concentration changes were associated with spreading depolarizations, known to be detrimental to the injured brain. Induced waves were identified by a signature lactate concentration change profile and measured as having a speed of ∼2.7 mm/min (n = 4 waves). Our work highlights the potential applications of fiber-based biosensors for direct monitoring of brain metabolites in the context of injury.

Journal article

Xianyu Y, Lin Y, Chen Q, Belessiotis-Richards A, Stevens M, Thomas Met al., 2021, Iodide-mediated rapid and sensitive surface etching of gold nanostars for biosensing, Angewandte Chemie International Edition, Vol: 60, Pages: 9891-9896, ISSN: 1433-7851

Iodide‐mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high‐energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase‐catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme‐modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.

Journal article

Sabnis A, Haggard K, Kloeckner A, Becce M, Evans L, Furniss R, Mavridou D, Stevens M, Murphy R, Davies J, Clarke T, Edwards Aet al., 2021, Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane, eLife, Vol: 10, Pages: 1-26, ISSN: 2050-084X

Colistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.

Journal article

Nelson M, Li S, Page SJ, Shi X, Lee PD, Stevens MM, Hanna JV, Jones JRet al., 2021, 3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes, Materials Science and Engineering: C, Vol: 123, Pages: 1-12, ISSN: 0928-4931

Inorganic/organic hybrids have co-networks of inorganic and organic components, with the aim of obtaining synergy of the properties of those components. Here, a silica-gelatin sol-gel hybrid “ink” was directly 3D printed to produce 3D grid-like scaffolds, using a coupling agent, 3-glycidyloxypropyl)trimethoxysilane (GPTMS), to form covalent bonds between the silicate and gelatin co-networks. Scaffolds were printed with 1 mm strut separation, but the drying method affected the final architecture and properties. Freeze drying produced <40 μm struts and large ~700 μm channels. Critical point drying enabled strut consolidation, with ~160 μm struts and ~200 μm channels, which improved mechanical properties. This architecture was critical to cellular response: when chondrocytes were seeded on the scaffolds with 200 μm wide pore channels in vitro, collagen Type II matrix was preferentially produced (negligible amount of Type I or X were observed), indicative of hyaline-like cartilaginous matrix formation, but when pore channels were 700 μm wide, Type I collagen was prevalent. This was supported by Sox9 and Aggrecan expression. The scaffolds have potential for regeneration of articular cartilage regeneration, particularly in sports medicine cases.

Journal article

Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens Met al., 2021, IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells, Scientific Reports, Vol: 11, Pages: 1-14, ISSN: 2045-2322

Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell–matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.

Journal article

Kim N, Kim E, Kim H, Thomas M, Najer A, Stevens Met al., 2021, Tumor-targeting cholesterol-decorated DNA nanoflowers for intracellular ratiometric aptasensing, Advanced Materials, Vol: 33, Pages: 1-10, ISSN: 0935-9648

Probing endogenous molecular profiles is of fundamental importance to understand cellular function and processes. Despite the promise of programmable nucleic‐acid‐based aptasensors across the breadth of biomolecular detection, target‐responsive aptasensors enabling intracellular detection are as of yet infrequently realized. Several challenges remain, including the difficulties in quantification/normalization of quencher‐based intensiometric signals, stability issues of the probe architecture, and complex sensor operations often necessitating extensive structural modeling. Here, the biomimetic crystallization‐empowered self‐assembly of a tumor‐targetable DNA–inorganic hybrid nanocomposite aptasensor is presented, which enables Förster resonance energy transfer (FRET)‐based quantitative interpretation of changes in the cellular target abundance. Leveraging the design programmability and high‐throughput fabrication of rolling circle amplification‐driven DNA nanoarchitecture, this designer platform offers a method to self‐assemble a robust nanosensor from a multifunctionality‐encoded template that includes a cell‐targeting aptamer, a ratiometric aptasensor, and a cholesterol‐decorating element. Taking prostate cancer cells and intracellular adenosine triphosphate molecules as a model system, a synergistic effect in the targeted delivery by cholesterol and aptamers, and the feasibility of quantitative intracellular aptasensing are demonstrated. It is envisioned that this approach provides a highly generalizable strategy across wide‐ranging target systems toward a biologically deliverable nanosensor that enables quantitative monitoring of the abundance of endogenous biomolecules.

Journal article

Horgan C, Bergholt MS, Thin MZ, Nagelkerke A, Kennedy R, Kalber TL, Stuckey D, Stevens Met al., 2021, Image-guided Raman spectroscopy probe-tracking for tumor margin delineation, Journal of Biomedical Optics, Vol: 26, Pages: 1-15, ISSN: 1083-3668

Significance: Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application.Aim: We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins.Approach: We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation.Results: Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model.Conclusions: Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00398347&limit=30&person=true&page=3&respub-action=search.html