Imperial College London


Faculty of EngineeringDepartment of Civil and Environmental Engineering

Research Associate



+44 (0)20 7594 6120m.sule08 Website




304Skempton BuildingSouth Kensington Campus





Publication Type

10 results found

Kis Z, Koppelaar RHEM, Sule MN, Mensah FK, Wang X, Triantafyllidis C, Van Dam KH, Shah Net al., 2018, Framework for WASH sector data improvements in data-poor environments, applied to Accra, Ghana, Water, Vol: 10, ISSN: 2073-4441

Improvements in water, sanitation and hygiene (WASH) service provision are hampered by limited open data availability. This paper presents a data integration framework, collects the data and develops a material flow model, which aids data-based policy and infrastructure development for the WASH sector. This model provides a robust quantitative mapping of the complete anthropogenic WASH flow-cycle: from raw water intake to water use, wastewater and excreta generation, discharge and treatment. This approach integrates various available sources using a process-chain bottom-up engineering approach to improve the quality of WASH planning. The data integration framework and the modelling methodology are applied to the Greater Accra Metropolitan Area (GAMA), Ghana. The highest level of understanding of the GAMA WASH sector is achieved, promoting scenario testing for future WASH developments. The results show 96% of the population had access to improved safe water in 2010 if sachet and bottled water was included, but only 67% if excluded. Additionally, 66% of 338,000 m3 per day of generated wastewater is unsafely disposed locally, with 23% entering open drains, and 11% sewage pipes, indicating poor sanitation coverage. Total treated wastewater is <0.5% in 2014, with only 18% of 43,000 m3 per day treatment capacity operational. The combined data sets are made available to support research and sustainable development activities.

Journal article

Hammoud AS, Leung J, Tripathi S, Butler AP, Sule MN, Templeton MRet al., 2018, The impact of latrine contents and emptying practices on nitrogen contamination of well water in Kathmandu Valley, Nepal, AIMS Environmental Science, Vol: 5, Pages: 143-153, ISSN: 2372-0352

Leaching of nitrogen-containing compounds (e.g., ammonia, nitrate) from pit latrines and seepage tanks into groundwater may pose health risks, given that groundwater is a significant source for drinking water in many low-income countries. In this study, three communities within Kathmandu, Nepal (Manohara, Kupondole, and Lokanthali) were visited to investigate the impact of pit latrines on groundwater quality, with a focus on understanding the fate of nitrogen-containing compounds specifically. Well water samples were analyzed over two seasons (wet and dry) for their nitrogen content, dissolved oxygen (DO), chemical oxidation demand (COD), and oxidation-reduction potential (ORP), and samples collected from within the nearby pits were also analyzed to determine nitrogen content and COD. Hand dug wells were found to be more likely receptors of contamination than tube wells, as expected, with inter-well variations related to the relative redox conditions in the wells. Increased pit-emptying frequency was related to lower levels of nitrogen in the latrines and in the nearest wells, suggesting this may be an effective strategy for reducing the risks of groundwater contamination in such settings, all else being equal.

Journal article

Sule MN, Templeton MR, Bond T, 2016, Rejection of organic micro-pollutants from water by a tubular, hydrophilic pervaporative membrane designed for irrigation applications, Environmental Technology, Vol: 37, Pages: 1382-1389, ISSN: 1479-487X

The links between chemical properties, including those relating to molecular size, solubility,hydrophobicity and vapour pressure, and rejection of model aromatic micro-pollutants by atubular, hydrophilic polymer pervaporation membrane designed for irrigation applicationswas investigated. Open air experiments were conducted at room temperature for individualsolutions of fluorene, naphthalene, phenol, 1,2-dichlorobenzene, 1,2-diethylbenzene and 2-phenoxyethanol. Percentage rejection generally increased with increased molecular size forthe model micro-pollutants (47% - 86%). Molecular weight and logKow had the strongestpositive relationships with rejection, as demonstrated by respective correlation coefficients ofr = 0.898 and 0.824. Rejection was also strongly negatively correlated with aqueoussolubility and H-bond δ. However, properties which relate to vapour phase concentrations ofthe micro-pollutants were not well correlated with rejection. Thus, physicochemicalseparation processes, rather than vapour pressure, drives removal of aromatic contaminantsby the investigated pervaporation tube. This expanded knowledge could be utilised inconsidering practical applications of pervaporative irrigation systems for treating organiccontaminatedwaters such as oilfield produced waters.

Journal article

Bond T, Sule MN, Todman LC, Templeton MR, Brant Jet al., 2014, Pervaporative membrane filtration for subsurface irrigation, 248th American Chemical Society National Meeting and Exposition, San Francisco, California, USA

Conference paper

Sule MN, Jiang J, Templeton MR, Huth E, Brant J, Bond Tet al., 2013, Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications, Environmental Technology, Vol: 34, Pages: 1329-1339

Journal article

Sule MN, Bond T, Templeton MR, Todman LCet al., 2013, Desalination performance of a tubular pervaporative hydrophilic membrane for irrigation applications, Elsevier MEMDES 2013: 1st Conference on Desalination using Membrane Technology, Sitges, Spain

Conference paper

Sule M, Sustainable Water, Sanitation and Hygiene (WASH) in developing countries: Learning from WaterAid’s approach, 15th International Conference for Women Engineers and Scientists

Conference paper

Sule MN, Templeton MR, 2011, Reclamation of oilfield produced water using hydrophilic pervaporative membranes, 15th International Conference of Women Engineers and Scientists, Adelaide, Australia

Conference paper

Sule MN, Water Management: A case for developing countries – The Challenge, 14th International Conference for Women Engineers and Scientists

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00530364&limit=30&person=true