Imperial College London

Professor Michael Templeton

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Professor of Public Health Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6099m.templeton

 
 
//

Assistant

 

Miss Judith Barritt +44 (0)20 7594 5967

 
//

Location

 

303Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Ritson:2017:10.5194/bg-14-2891-2017,
author = {Ritson, JP and Brazier, RE and Graham, NJD and Freeman, C and Templeton, MR and Clark, JM},
doi = {10.5194/bg-14-2891-2017},
journal = {Biogeosciences},
pages = {2891--2902},
title = {The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources},
url = {http://dx.doi.org/10.5194/bg-14-2891-2017},
volume = {14},
year = {2017}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Drought conditions are expected to increase in frequency and severity as the climate changes, representing a threat to carbon sequestered in peat soils. Downstream water treatment works are also at risk of regulatory compliance failures and higher treatment costs due to the increase in riverine dissolved organic carbon (DOC) often observed after droughts. More frequent droughts may also shift dominant vegetation in peatlands from Sphagnum moss to more drought-tolerant species. This paper examines the impact of drought on the production and treatability of DOC from four vegetation litters (Calluna vulgaris, Juncus effusus, Molinia caerulea and Sphagnum spp.) and a peat soil. We found that mild droughts caused a 39.6% increase in DOC production from peat and that peat DOC that had been exposed to oxygen was harder to remove by conventional water treatment processes (coagulation/flocculation). Drought had no effect on the amount of DOC production from vegetation litters; however large variation was observed between typical peatland species (Sphagnum and Calluna) and drought-tolerant grassland species (Juncus and Molinia), with the latter producing more DOC per unit weight. This would therefore suggest the increase in riverine DOC often observed post-drought is due entirely to soil microbial processes and DOC solubility rather than litter layer effects. Long-term shifts in species diversity may, therefore, be the most important impact of drought on litter layer DOC flux, whereas pulses related to drought may be observed in peat soils and are likely to become more common in the future. These results provide evidence in support of catchment management which increases the resilience of peat soils to drought, such as ditch blocking to raise water tables.
AU - Ritson,JP
AU - Brazier,RE
AU - Graham,NJD
AU - Freeman,C
AU - Templeton,MR
AU - Clark,JM
DO - 10.5194/bg-14-2891-2017
EP - 2902
PY - 2017///
SN - 1726-4189
SP - 2891
TI - The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources
T2 - Biogeosciences
UR - http://dx.doi.org/10.5194/bg-14-2891-2017
UR - http://hdl.handle.net/10044/1/48501
VL - 14
ER -