Imperial College London

DrMarkWenman

Faculty of EngineeringDepartment of Materials

Reader in Nuclear Materials
 
 
 
//

Contact

 

+44 (0)20 7594 6763m.wenman

 
 
//

Location

 

B301aRoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Whiting:2019:10.1063/1.5109483,
author = {Whiting, T and Burr, PA and King, D and Wenman, M},
doi = {10.1063/1.5109483},
journal = {Journal of Applied Physics},
title = {Understanding the importance of the energetics of Mn, Ni, Cu, Si and vacancy triplet clusters in bcc Fe},
url = {http://dx.doi.org/10.1063/1.5109483},
volume = {126},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Numerous experimental studies have found the presence of (Cu)-Ni-Mn-Si clusters in neutron irradiated reactor pressure vessel steels, prompting concerns that these clusters could lead to larger than expected increases in hardening, especially at high fluences late in life. The mechanics governing clustering for the Fe-Mn-Ni-Si system are not well-known; state-of-the-art methods use kinetic Monte Carlo (KMC) parameterised by density functional theory (DFT) and thermodynamic data to model the time evolution of clusters. However, DFT based KMC studies have so far been limited to only pairwise interactions due to lack of DFT data. Here we explicitly calculate the binding energy of triplet clusters of Mn, Ni, Cu, Si and vacancies in bcc Fe using DFT to show that the presence of vacancies, Si, or Cu stabilises cluster formation, as clusters containing exclusively Mn and/or Ni are not energetically stable in the absence of interstitials. We further identify which clusters may be reasonably approximated as a sum of pairwise interactions, and which instead require an explicit treatment of the three-body interaction, showing that the three-body term can account for as much as 0.3 eV, especially for clusters containing vacancies.
AU - Whiting,T
AU - Burr,PA
AU - King,D
AU - Wenman,M
DO - 10.1063/1.5109483
PY - 2019///
SN - 0021-8979
TI - Understanding the importance of the energetics of Mn, Ni, Cu, Si and vacancy triplet clusters in bcc Fe
T2 - Journal of Applied Physics
UR - http://dx.doi.org/10.1063/1.5109483
UR - http://hdl.handle.net/10044/1/71638
VL - 126
ER -