Imperial College London

ProfessorMarkNeil

Faculty of Natural SciencesDepartment of Physics

Professor of Photonics
 
 
 
//

Contact

 

+44 (0)20 7594 7611mark.neil

 
 
//

Assistant

 

Ms Judith Baylis +44 (0)20 7594 7713

 
//

Location

 

608Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

272 results found

Jones DC, Kumar S, Lanigan PMP, McGuinness CD, Dale MW, Twitchen DJ, Fisher D, Martineau PM, Neil M, Dunsby C, French Pet al., 2019, Multidimensional luminescence microscope for imaging defect colour centres in diamond, Methods and Applications in Fluorescence, Vol: 8, ISSN: 2050-6120

We report a multidimensional luminescence microscope providing hyperspectral imaging and time-resolved (luminescence lifetime) imaging for the study of luminescent diamond defects. The instrument includes crossed-polariser white light transmission microscopy to reveal any birefringence that would indicate strain in the diamond lattice. We demonstrate the application of this new instrument to defects in natural and synthetic diamonds including N3, nitrogen and silicon vacancies. Hyperspectral imaging provides contrast that is not apparent in conventional intensity images and the luminescence lifetime provides further contrast.

Journal article

Quicke P, Song C, McKimm EJ, Milosevic MM, Howe CL, Neil M, Schultz SR, Antic SD, Foust AJ, Knopfel Tet al., 2019, Corrigendum: Single-neuron level one-photon voltage imaging with sparsely targeted genetically encoded voltage indicators, Frontiers in Cellular Neuroscience, Vol: 13, ISSN: 1662-5102

Voltage imaging of many neurons simultaneously at single-cell resolution is hampered bythe difficulty of detecting small voltage signals from overlapping neuronal processes inneural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaginghave shown single-cell resolution optical voltage recordings in intact tissue throughimaging naturally sparse cell classes, sparse viral expression, soma restricted expression,advanced optical systems, or a combination of these. Widespread sparse and strongtransgenic GEVI expression would enable straightforward optical access to a denselyoccurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recentlydescribed sparse transgenic expression strategy can enable single-cell resolution voltageimaging of cortical pyramidal cells in intact brain tissue without restricting expression tothe soma. We also quantify the functional crosstalk in brain tissue and discuss optimalimaging rates to inform future GEVI experimental design.

Journal article

Quicke P, Song C, McKimm EJ, Milosevic MM, Howe CL, Neil M, Schultz SR, Antic SD, Foust AJ, Knopfel Tet al., 2019, Single-neuron level one-photon voltage imaging with sparsely targeted genetically encoded voltage indicators, Frontiers in Cellular Neuroscience, Vol: 13, ISSN: 1662-5102

Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.

Journal article

Munro I, Garcia EAC, Yan M, Guldbrand S, Kumar S, Kwakwa K, Dunsby C, Neil M, French Pet al., 2019, Accelerating single molecule localisation microscopy through parallel processing on a high-performance computing cluster, Journal of Microscopy, Vol: 273, Pages: 148-160, ISSN: 1365-2818

Super‐resolved microscopy techniques have revolutionized the ability to study biological structures below the diffraction limit. Single molecule localization microscopy (SMLM) techniques are widely used because they are relatively straightforward to implement and can be realized at relatively low cost, e.g. compared to laser scanning microscopy techniques. However, while the data analysis can be readily undertaken using open source or other software tools, large SMLM data volumes and the complexity of the algorithms used often lead to long image data processing times that can hinder the iterative optimization of experiments. There is increasing interest in high throughput SMLM, but its further development and application is inhibited by the data processing challenges. We present here a widely applicable approach to accelerating SMLM data processing via a parallelized implementation of ThunderSTORM on a high‐performance computing (HPC) cluster and quantify the speed advantage for a four‐node cluster (with 24 cores and 128 GB RAM per node) compared to a high specification (28 cores, 128 GB RAM, SSD‐enabled) desktop workstation. This data processing speed can be readily scaled by accessing more HPC resources. Our approach is not specific to ThunderSTORM and can be adapted for a wide range of SMLM software.

Journal article

Soor N, Quicke P, Howe C, Pang KT, Neil M, Schultz S, Foust Aet al., 2019, All-optical crosstalk-free manipulation and readout of Chronos-expressing Neurons, Journal of Physics D: Applied Physics, Vol: 52, ISSN: 0022-3727

All optical neurophysiology allows manipulation and readout of neural network activity with single-cell spatial resolution and millisecond temporal resolution. Neurons can be made to express proteins that actuate transmembrane currents upon light absorption, enabling optical control of membrane potential and action potential signalling. In addition, neurons can be genetically or synthetically labelled with fluorescent reporters of changes in intracellular calcium concentration or membrane potential. Thus, to optically manipulate and readout neural activity in parallel, two spectra are involved: the action spectrum of the actuator, and the absorption spectrum of the fluorescent reporter. Due to overlap in these spectra, previous all-optical neurophysiology paradigms have been hindered by spurious activation of neuronal activity caused by the readout light. Here, we pair the blue-green absorbing optogenetic actuator, Chronos, with a deep red-emitting fluorescent calcium reporter CaSiR-1. We show that cultured Chinese hamster ovary cells transfected with Chronos do not exhibit transmembrane currents when illuminated with wavelengths and intensities suitable for exciting one-photon CaSiR-1 fluorescence. We then demonstrate crosstalk-free, high signal-to-noise ratio CaSiR-1 red fluorescence imaging at 100 frames s−1 of Chronos-mediated calcium transients evoked in neurons with blue light pulses at rates up to 20 Hz. These results indicate that the spectral separation between red light excited fluorophores, excited efficiently at or above 640 nm, with blue-green absorbing opsins such as Chronos, is sufficient to avoid spurious opsin actuation by the imaging wavelengths and therefore enable crosstalk-free all-optical neuronal manipulation and readout.

Journal article

Görlitz F, Lightley J, Kumar S, Garcia E, Yan M, Wysoczanski R, Alexandrov Y, Baker JR, Barnes PJ, Munro I, Donnelly LE, Dunsby C, Neil MAA, French PMWet al., 2019, Automated multiwell plate STORM: Towards open source super-resolved high content analysis, ISSN: 1605-7422

© 2019 SPIE. Among super-resolved microscopy (SRM) methods, single molecule localisation microscopy techniques, such as photo-activated localisation microscopy (PALM) [1] and stochastic optical reconstruction microscopy (STORM) [2], enable imaging beyond the classical diffraction limit to gain new insights in subcellular biological processes with relatively simple instrumentation. This has led to a number of low-cost instruments, e.g. for STORM microscopy [3-6], which can benefit from an array of software tools for the single molecule localisation microscopy (SMLM) data analysis [7]. Our low-cost "easySTORM" approach [4] implements dSTORM [8] with multimode diode lasers and optical fibres to provide STORM images with fields of view up to ∼125 μm diameter using μManager [9] to control the image data acquisition and ThunderSTORM [10] to analyse the SMLM data. We and others [11,12] are motivated to develop automated SMLM for high content analysis (HCA) that enable rapid imaging of sample arrays, allows statistical analysis of samples that may vary in terms of labelling and biological heterogeneity and enable moderate throughput screening applications.

Conference paper

Soltan A, Maaskant P, Armstrong N, Al-Atabany W, Chaudet L, Neil M, Degenaar Pet al., 2019, Wearable Glasses for Retinal Pigmentiosa Based on Optogenetics, IEEE International Symposium on Circuits and Systems (IEEE ISCAS), Publisher: IEEE, ISSN: 0271-4302

Conference paper

Gorlitz F, Guldbrand S, Runcorn T, Murray R, Jaso-Tamame A, Sinclair H, Martinez-Perez E, Taylor J, Neil M, Dunsby CW, French Pet al., 2018, easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning, Journal of Biophotonics, Vol: 11, ISSN: 1864-063X

We demonstrate a simplified set‐up for STED microscopy with a straightforward alignment procedure that uses a single spatial light modulator (SLM) with collinear incident excitation and depletion beams to provide phase modulation of the beam profiles and correction of optical aberrations. We show that this approach can be used to extend the field of view for STED microscopy by correcting chromatic aberration that otherwise leads to walk‐off between the focused excitation and depletion beams. We further show how this arrangement can be adapted to increase the imaging speed through multibeam excitation and depletion. Fine adjustments to the alignment can be accomplished using the SLM only, conferring the potential for automation.

Journal article

Soltan A, Barrett JM, Maaskant P, Armstrong N, Al-Atabany W, Chaudet L, Neil M, Sernagor E, Degenaar Pet al., 2018, A head mounted device stimulator for optogenetic retinal prosthesis, JOURNAL OF NEURAL ENGINEERING, Vol: 15, ISSN: 1741-2560

Journal article

Quicke P, Reynolds S, Neil M, Knopfel T, Schultz S, Foust AJet al., 2018, High speed functional imaging with source localized multifocal two-photon microscopy, Biomedical Optics Express, Vol: 9, Pages: 3678-3693, ISSN: 2156-7085

Multifocal two-photon microscopy (MTPM) increases imaging speed over single-focus scanning by parallelizing fluorescence excitation. The imaged fluorescence’s susceptibility to crosstalk, however, severely degrades contrast in scattering tissue. Here we present a source-localized MTPM scheme optimized for high speed functional fluorescence imaging in scattering mammalian brain tissue. A rastered line array of beamlets excites fluorescence imaged with a complementary metal-oxide-semiconductor (CMOS) camera. We mitigate scattering-induced crosstalk by temporally oversampling the rastered image, generating grouped images with structured illumination, and applying Richardson-Lucy deconvolution to reassign scattered photons. Single images are then retrieved with a maximum intensity projection through the deconvolved image groups. This method increased image contrast at depths up to 112 μm in scattering brain tissue and reduced functional crosstalk between pixels during neuronal calcium imaging. Source-localization did not affect signal-to-noise ratio (SNR) in densely labeled tissue under our experimental conditions. SNR decreased at low frame rates in sparsely labeled tissue, with no effect at frame rates above 50 Hz. Our non-descanned source-localized MTPM system enables high SNR, 100 Hz capture of fluorescence transients in scattering brain, increasing the scope of MTPM to faster and smaller functional signals.

Journal article

Kim Y, Warren S, Favero F, Stone J, Clegg J, Neil M, Paterson C, Knight J, French P, Dunsby CWet al., 2018, Semi-random multicore fibre design for adaptive multiphoton endoscopy, Optics Express, Vol: 26, Pages: 3661-3673, ISSN: 1094-4087

This paper reports the development, modelling and application of a semi-random multicore fibre (MCF) design for adaptive multiphoton endoscopy. The MCF was constructed from 55 sub-units, each comprising 7 single mode cores, in a hexagonally close-packed lattice where each sub-unit had a random angular orientation. The resulting fibre had 385 single mode cores and was double-clad for proximal detection of multiphoton excited fluorescence. The random orientation of each sub-unit in the fibre reduces the symmetry of the positions of the cores in the MCF, reducing the intensity of higher diffracted orders away from the central focal spot formed at the distal tip of the fibre and increasing the maximum size of object that can be imaged. The performance of the MCF was demonstrated by imaging fluorescently labelled beads with both distal and proximal fluorescence detection and pollen grains with distal fluorescence detection. We estimate that the number of independent resolution elements in the final image – measured as the half-maximum area of the two-photon point spread function divided by the area imaged – to be ~3200.

Journal article

Quicke P, Neil M, Knopfel T, Schultz SR, Foust AJet al., 2017, Source-Localized Multifocal Two-Photon Microscopy for High-Speed Functional Imaging, 71st Annual Meeting of the Society-of-General-Physiologists (SGP) on Optical Revolution in Physiology - From Membrane to Brain, Publisher: ROCKEFELLER UNIV PRESS, Pages: 13A-14A, ISSN: 0022-1295

Conference paper

Sherlock B, Warren SC, Alexandrov Y, Yu F, Stone J, Knight J, Neil MAA, Paterson C, French PMW, Dunsby CWet al., 2017, In vivo multiphoton microscopy using a handheld scanner with lateral and axial motion compensation, Journal of Biophotonics, Vol: 11, ISSN: 1864-063X

This paper reports a handheld multiphoton fluorescence microscope designed for clinical imaging that incorporates axial motion compensation and lateral image stabilization. Spectral domain optical coherence tomography is employed to track the axial position of the skin surface, and lateral motion compensation is realised by imaging the speckle pattern arising from the optical coherence tomography beam illuminating the sample. Our system is able to correct lateral sample velocities of up to ~65 μm s-1. Combined with the use of negative curvature microstructured optical fibre to deliver tunable ultrafast radiation to the handheld multiphoton scanner without the need of a dispersion compensation unit, this instrument has potential for a range of clinical applications. The system is used to compensate for both lateral and axial motion of the sample when imaging human skin in vivo.

Journal article

Gorlitz F, Corcoran DS, Garcia Castano EA, Leitinger B, Neil MAA, Dunsby CW, French PMWet al., 2017, Mapping molecular function to biological nanostructure: combining structured illumination microscopy with fluorescence lifetime imaging (SIM+FLIM), Photonics, Vol: 4, ISSN: 2304-6732

We present a new microscope integrating super-resolved imaging using structured illumination microscopy (SIM) with wide-field optically sectioned fluorescence lifetime imaging (FLIM) to provide optical mapping of molecular function and its correlation with biological nanostructure below the conventional diffraction limit. We illustrate this SIM + FLIM capability to map FRET readouts applied to the aggregation of discoidin domain receptor 1 (DDR1) in Cos 7 cells following ligand stimulation and to the compaction of DNA during the cell cycle.

Journal article

Casey D, Wylie D, Neil M, 2017, Optical techniques and microtools for subcellular delivery and sampling, Light Robotics-Structure-Mediated Nanobiophotonics, Pages: 287-311, ISBN: 9780702070969

© 2017Elsevier Ltd All rights reserved. The vast majority of biochemical and histological assays are conducted upon ensembles of tens or hundreds or thousands of cells. However, there is a robust and increasing volume of evidence that small subpopulations of cells play significant roles in the development of many disease states, and particularly in their evolution toward treatment resistance. As such, a novel suite of optical tools has been and is being developed, offering functionality analogous to traditional techniques but furnishing them with single- or even subcellular resolution. These are designed to probe the operations of life at its most fundamental level, providing insights into the complex, crowded, and seemingly chaotic processes underpinning cellular processes and their malfunctions.In this chapter, the development of these tools will be explored from their origins to their current state of the art, alongside their applications in both proof-of-concept and applied clinical roles. The focus will be upon tools and techniques designed and developed to interact directly with the cell membrane, taking in optical lysis, poration, and fusion techniques alongside surface chemistry and thin-film coatings capable of causing structural effects within a target cell's plasma membrane. Notable successes and problems will be critically analyzed, and the prospects for the future will be discussed with reference to emerging technologies and promising research avenues in the field.

Book chapter

Soltan A, McGovern B, Drakakis E, Neil M, Maaskant P, Akhter M, Lee JS, Degenaar Pet al., 2017, High density, high radiance mu LED matrix for optogenetic retinal Prostheses and planar neural stimulation, IEEE Transactions on Biomedical Circuits and Systems, Vol: 11, Pages: 347-359, ISSN: 1932-4545

Optical neuron stimulation arrays are important for both in-vitro biology and retinal prosthetic biomedical applications. Hence, in this work, we present an 8100 pixel high radiance photonic stimulator. The chip module vertically combines custom made gallium nitride μLEDs with a CMOS application specific integrated circuit. This is designed with active pixels to ensure random access and to allow continuous illumination of all required pixels. The μLEDs have been assembled on the chip using a solder ball flip-chip bonding technique which has allowed for reliable and repeatable manufacture. We have evaluated the performance of the matrix by measuring the different factors including the static, dynamic power consumption, the illumination, and the current consumption by each LED. We show that the power consumption is within a range suitable for portable use. Finally, the thermal behavior of the matrix is monitored and the matrix proved to be thermally stable.

Journal article

Sparks H, Gorlitz F, Kelly D, Warren SC, Kellet PA, Garcia E, Dymoke-Bradshaw AKL, Hares JD, Neil MAA, Dunsby C, French PMWet al., 2017, Characterisation of new gated optical image intensifiers for fluorescence lifetime imaging, Review of Scientific Instruments, Vol: 88, ISSN: 1089-7623

We report the characterisation of gated optical image intensifiers for fluorescence lifetime imaging (FLIM), evaluating the performance of several different prototypes that culminate in a new design that provides improved spatial resolution conferred by the addition of a magnetic field to reduce the lateral spread of photoelectrons on their path between the photocathode and microchannel plate, and higher signal to noise ratio conferred by longer time gates. We also present a methodology to compare thesesystems and their capabilities, including the quantitative readouts of Förster resonant energy transfer (FRET).

Journal article

French PMW, Görlitz F, Kelly D, Warren S, Alibhai D, West L, Kumar S, Alexandrov Y, Munro I, McGinty J, Talbot C, Serwa R, Thinon E, Da Paola V, Murray EJ, Stuhmeier F, Neil M, Tate E, Dunsby Cet al., 2017, Open source high content analysis utilizing automated fluorescence lifetime imaging microscopy, Jove-Journal of Visualized Experiments, Vol: 119, ISSN: 1940-087X

We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe herethe functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in μ Manager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.

Journal article

Go¨rlitz F, Corcoran DS, Sparks H, Leitinger B, Neil M, Dunsby C, French Pet al., 2017, Mapping molecular function to biological nanostructure: Combining structured illumination microscopy with fluorescence lifetime imaging

© 2017 OSA. We report the enhancement of spatial resolution and sensitivity of wide-field time-gated imaging and the combination with SIM to map molecular function using FRET to biological nanostructure below the conventional diffraction limit.

Conference paper

Cortés E, Huidobro PA, Sinclair HG, Guldbrand S, Peveler WJ, Davies T, Parrinello S, Görlitz F, Dunsby C, Neil MAA, Sivan Y, Parkin IP, French PMW, Maier SAet al., 2016, Plasmonic nanoprobes for stimulated emission depletion nanoscopy, ACS Nano, Vol: 10, Pages: 10454-10461, ISSN: 1936-0851

Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved nanoscopy. We demonstrate stimulated emission depletion (STED) nanoscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm. These particles provide an enhancement of up to 50% of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. The nanoparticle-assisted STED probes reported here represent a ∼2 × 103 reduction in probe volume compared to previously used nanoparticles. Finally, we demonstrate their application toward plasmon-assisted STED cellular imaging at low-depletion powers, and we also discuss their current limitations.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, ces Oet al., 2016, Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets, Soft Matter, Vol: 12, Pages: 7731-7734, ISSN: 1744-6848

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

Journal article

Warren SC, Kim Y, Stone JM, Mitchell C, Knight JC, Neil MAA, Paterson C, French PMW, Dunsby CWet al., 2016, Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection, Optics Express, Vol: 24, Pages: 21474-21484, ISSN: 1094-4087

This paper demonstrates multiphoton excited fluorescenceimaging through a polarisation maintaining multicore fiber (PM-MCF)while the fiber is dynamically deformed using all-proximal detection.Single-shot proximal measurement of the relative optical path lengths of allthe cores of the PM-MCF in double pass is achieved using a Mach-Zehnderinterferometer read out by a scientific CMOS camera operating at 416 Hz.A non-linear least squares fitting procedure is then employed to determinethe deformation-induced lateral shift of the excitation spot at the distal tip ofthe PM-MCF. An experimental validation of this approach is presented thatcompares the proximally measured deformation-induced lateral shift infocal spot position to an independent distally measured ground truth. Theproximal measurement of deformation-induced shift in focal spot position isapplied to correct for deformation-induced shifts in focal spot positionduring raster-scanning multiphoton excited fluorescence imaging.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., The optical assembly of bilayer networks from cell-sized droplets for synthetic biology, Systems and Synthetic Biology

Conference paper

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., Optical tweezers to assemble 2D and 3D droplet interface bilayer networks from cell-sized droplets, EMBL Microfluidics

Conference paper

Kim Y, Warren SC, Stone JM, Knight JC, Neil MAA, Paterson C, Dunsby CW, French PMWet al., 2016, Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre, IEEE Journal of Selected Topics in Quantum Electronics, Vol: 22, ISSN: 1558-4542

We present a laser scanning multiphoton endomicroscopewith no distal optics or mechanical components that incorporatesa polarization-maintaining (PM) multicore optical fibre todeliver, focus, and scan ultrashort pulsed radiation for two-photonexcited fluorescence imaging. We show theoretically that the use ofa PM multicore fibre in our experimental configuration enhancesthe fluorescence excitation intensity achieved in the focal spot comparedto a non-PM optical fibre with the same geometry and con-firm this by computer simulations based on numerical wavefrontpropagation. In our experimental system, a spatial light modulator(SLM) is utilised to program the phase of the light input to each ofthe cores of the endoscope fibre such that the radiation emergingfrom the distal end of the fibre interferes to provide the focusedscanning excitation beam. We demonstrate that the SLM can enabledynamic phase correction of path-length variations across themulticore optical fibre whilst the fibre is perturbed with an updaterate of 100 Hz.

Journal article

sherlock B, Yu F, Stone J, Warren S, Paterson C, Neil MAA, French PMW, Dunsby CWet al., 2016, Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre, Journal of Biophotonics, Vol: 9, Pages: 715-720, ISSN: 1864-0648

Negative curvature fibre (NCF) guides light in its core by inhibiting the coupling of core andcladding modes. In this work, an NCF was designed and fabricated to transmit ultrashort opticalpulses for multiphoton microscopy with low group velocity dispersion (GVD) at 800 nm. Itsattenuation was measured to be <0.3 dB.m-1over the range 600-850 nm and the GVD was-180±70 fs2.m-1at 800 nm. Using an average fibre output power of ~20 mW and pulserepetition rate of 80 MHz, the NCF enabled pulses with a duration of <200 fs to be transmittedthrough a length of 1.5 m of fibre over a tuning range of 180 nm without the need for dispersioncompensation. In a 4 m fibre, temporal and spectral pulse widths were maintained to within10% of low power values up to the maximum fibre output power achievable with the lasersystem used of 278 mW at 700 nm, 808 mW at 800 nm and 420 mW at 860 nm. When coupledto a multiphoton microscope, it enabled imaging of ex vivo tissue using excitation wavelengthsfrom 740 nm to 860 nm without any need for adjustments to the set-up.

Journal article

Kwakwa K, Savell A, Davies T, Munro I, Parrinello S, Purbhoo MA, Dunsby C, Neil MAA, French PMWet al., 2016, easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy, Journal of Biophotonics, Vol: 9, Pages: 948-957, ISSN: 1864-0648

TIRF and STORM microscopy are super-resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low-cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non-TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks NJ, Law RV, Seddon JM, Neil MAA, Ces Oet al., 2016, Light-driven drag and drop assembly of micron-scale bilayer networks for synthetic biology, Pages: 545-546

We have developed a new method to assemble single- or multi-layered networks of droplet interface bilayers (DIBs) from cell-sized droplets using a single beam optical trap (optical tweezers). The novelty of our approach is the ability to directly trap the microdroplets with the laser and manipulate them in 3D to construct DIB networks of user-defined architectures. Our method does not require a complex optical setup, is versatile, contactless, benefits from both high spatial and temporal resolution, and could set a new paradigm for the assembly of smart, synthetic biosystems.

Conference paper

Willison KR, Salehi-Reyhani A, Burgin E, Barclay M, Brown A, Neil MA, Ces O, Klug DRet al., 2015, Absolute quantification of protein copy number in single cells using single molecule microarrays, EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, Vol: 44, Pages: S179-S179, ISSN: 0175-7571

Journal article

Talbot CB, Lagarto J, Warren S, Neil MAA, French PMW, Dunsby Cet al., 2015, Correction Approach for Delta Function Convolution Model Fitting of Fluorescence Decay Data in the Case of a Monoexponential Reference Fluorophore, Journal of Fluorescence, Vol: 25, Pages: 1169-1182, ISSN: 1573-4994

A correction is proposed to the Delta function convolution method (DFCM) for fitting a multiexponential decay model to time-resolved fluorescence decay data using a monoexponential reference fluorophore. A theoretical analysis of the discretised DFCM multiexponential decay function shows the presence an extra exponential decay term with the same lifetime as the reference fluorophore that we denote as the residual reference component. This extra decay component arises as a result of the discretised convolution of one of the two terms in the modified model function required by the DFCM. The effect of the residual reference component becomes more pronounced when the fluorescence lifetime of the reference is longer than all of the individual components of the specimen under inspection and when the temporal sampling interval is not negligible compared to the quantity (τR −1 – τ−1)−1, where τR and τ are the fluorescence lifetimes of the reference and the specimen respectively. It is shown that the unwanted residual reference component results in systematic errors when fitting simulated data and that these errors are not present when the proposed correction is applied. The correction is also verified using real data obtained from experiment.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00363645&limit=30&person=true