Imperial College London

Professor MENGXING TANG

Faculty of EngineeringDepartment of Bioengineering

Professor of Biomedical Imaging
 
 
 
//

Contact

 

+44 (0)20 7594 3664mengxing.tang Website

 
 
//

Location

 

3.13Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

264 results found

Riemer K, Tan Q, Morse S, Bau L, Toulemonde M, Yan J, Zhu J, Wang B, Taylor L, Lerendegui M, Wu Q, Stride E, Dunsby C, Weinberg PD, Tang M-Xet al., 2024, 3D Acoustic Wave Sparsely Activated Localization Microscopy With Phase Change Contrast Agents., Invest Radiol, Vol: 59, Pages: 379-390

OBJECTIVE: The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS: Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS: With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 μm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS: Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.

Journal article

Lerendegui M, Riemer K, Papageorgiou G, Wang B, Lachlan A, Chavignon A, Zhang T, Couture O, Huang P, Ashikuzzaman M, Dencks S, Dunsby C, Helfield B, Jensen ØA, Lisson T, Lowerison MR, Rivaz H, Samir AE, Schmitz G, Schoen S, Ruud VS, Pengfei S, Stevens T, Yan J, Sboros V, Tang Met al., 2024, ULTRA-SR Challenge: Assessment of Ultrasound Localization and TRacking Algorithms for Super-Resolution Imaging, IEEE Transactions on Medical Imaging, ISSN: 0278-0062

Journal article

Yan J, Huang B, Tonko J, Toulemonde M, Hansen-Shearer J, Tan Q, Riemer K, Ntagiantas K, Chowdhury RA, Lambiase P, Senior R, Tang Met al., 2024, Transthoracic ultrasound localization microscopy of myocardial vasculature in patients, Nature Biomedical Engineering, ISSN: 2157-846X

Journal article

Grandi Sgambato B, Hasbani M, Barsakcioglu D, Ibáñez J, Jakob A, Fournelle M, Tang M-X, Farina Det al., 2024, High performance wearable ultrasound as a human-machine interface for wrist and hand kinematic tracking, IEEE Transactions on Biomedical Engineering, Vol: 71, Pages: 484-493, ISSN: 0018-9294

Objective: Non-invasive human machine interfaces (HMIs) have high potential in medical, entertainment, and industrial applications. Traditionally, surface electromyography (sEMG) has been used to track muscular activity and infer motor intention. Ultrasound (US) has received increasing attention as an alternative to sEMG-based HMIs. Here, we developed a portable US armband system with 24 channels and a multiple receiver approach, and compared it with existing sEMG- and US-based HMIs on movement intention decoding. Methods: US and motion capture data was recorded while participants performed wrist and hand movements of four degrees of freedom (DoFs) and their combinations. A linear regression model was used to offline predict hand kinematics from the US (or sEMG, for comparison) features. The method was further validated in real-time for a 3-DoF target reaching task. Results: In the offline analysis, the wearable US system achieved an average R2 of 0.94 in the prediction of four DoFs of the wrist and hand while sEMG reached a performance of R2=0.06 . In online control, the participants achieved an average 93% completion rate of the targets. Conclusion: When tailored for HMIs, the proposed US A-mode system and processing pipeline can successfully regress hand kinematics both in offline and online settings with performances comparable or superior to previously published interfaces. Significance: Wearable US technology may provide a new generation of HMIs that use muscular deformation to estimate limb movements. The wearable US system allowed for robust proportional and simultaneous control over multiple DoFs in both offline and online settings.

Journal article

Wang B, Riemer K, Toulemonde M, Yan J, Zhou X, Smith C, Tang M-Xet al., 2024, Broad Elevation Projection Super-Resolution Ultrasound (BEP-SRUS) imaging with a 1D unfocused linear array, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 71, Pages: 255-265, ISSN: 0885-3010

Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR’s ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.

Journal article

Jiang Z, Cudeiro-Blanco J, Ilbilgi Yildiz B, Sujarittam K, Dickinson RJ, Guasch L, Tang M, Hall TL, Choi JJet al., 2024, An Ultrasound Array of Emitter-Receiver Stacks for Microbubble-Based Therapy., IEEE Trans Biomed Eng, Vol: 71, Pages: 467-476

Most therapeutic ultrasound devices place emitters and receivers in separate locations, so that the long therapeutic pulses (>1 ms) can be emitted while receivers monitor the procedure. However, with such placement, emitters and receivers are competing for the same space, producing a trade-off between emission efficiency and reception sensitivity. Taking advantage of recent studies demonstrating that short-pulse ultrasound can be used therapeutically, we aimed to develop a device that overcomes such trade-offs. The array was composed of emitter-receiver stacks, which enabled both emission and reception from the same location. Each element was made of a lead zirconate titanate (PZT)-polyvinylidene fluoride (PVDF) stack. The PZT (frequency: 500 kHz, diameter: 16 mm) was used for emission and the PVDF (thickness: 28 μm, diameter: 16 mm) for broadband reception. 32 elements were assembled in a 3D-printed dome-shaped frame (focal length: 150 mm; [Formula: see text]-number: 1) and was tested in free-field and through an ex-vivo human skull. In free-field, the array had a 4.5 × 4.5 × 32 mm focus and produced a peak-negative pressure (PNP) of 2.12 MPa at its geometric center. The electronic steering range was ±15 mm laterally and larger than ±15 mm axially. Through the skull, the array produced a PNP of 0.63 MPa. The PVDF elements were able to localize broadband microbubble emissions across the skull. We built the first multi-element array for short-pulse and microbubble-based therapeutic applications. Stacked arrays overcome traditional trade-offs between the transmission and reception quality and have the potential to create a step change in treatment safety and efficacy.

Journal article

Li M, Chen L, Yan J, Jayasena CN, Liu Z, Li J, Li A, Zhu J, Wang R, Li J, Zhang C, Guo J, Zhao Y, Feng C, Tang M, Zheng Yet al., 2024, Super‐resolution ultrasound localization microscopy for the non‐invasive imaging of human testicular microcirculation and its differential diagnosis role in male infertility, VIEW, ISSN: 2688-268X

Testicular microcirculation is closely related to spermatogenic function and seminiferous tubular function. The diagnosis and monitoring of testicular diseases can be associated with testicular microcirculation; however, there are currently no effective non-invasive methods for super-resolution imaging of testicular microcirculation. In this study, we introduced state-of-the-art graph-based tracking with the Kalman motion model algorithm to non-invasively image human testicular microcirculation for the first time with a regular frame-rate clinical ultrasound imaging system (37 Hz). Two distinct testicular vessels with an 81 µm separation were resolved in the testicular vasculature, surpassing all other imaging modalities. In a retrospective study, we performed contrast-enhanced ultrasound examinations(CEUS) and ultrasound localization microscopy (ULM) processing on the included 76 infertile patients and 15 healthy controls from August 2021 to May 2023 and obtained super-resolution images of testicular microcirculation with sub-diffraction resolution. Through the results of one-way analysis of variance tests and receiver operating characteristic analyses, we found that the ULM-based parameters hold promise as clinical guidance for differentiating between non-obstructive and obstructive male infertility. The mean vessel diameter achieved an area under the curve (AUC) of 0.920 (95% confidence interval [CI]: 0.847–0.994, p < .001) with a cut-off value of 170.9 µm in oligoasthenospermia, and an AUC of 0.952 (95% CI: 0.875–1.000, p < .001) with a cut-off value of 169.9 µm in azoospermia patients, respectively, addressing a significant clinical challenge.

Journal article

Yang K, Li Q, Xu J, Tang M-X, Wang Z, Tsui P-H, Zhou Xet al., 2024, Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment, IEEE Transactions on Medical Imaging, Pages: 1-1, ISSN: 0278-0062

Journal article

Lubel E, Rohlén R, Grandi Sgambato B, Barsakcioglu D, Ibáñez J, Tang M-X, Farina Det al., 2023, Accurate identification of motoneuron discharges from ultrasound images across the full muscle cross-section, IEEE Transactions on Biomedical Engineering, Pages: 1-12, ISSN: 0018-9294

Objective: Non-invasive identification of motoneuron (MN) activity commonly uses electromyography (EMG). However, surface EMG (sEMG) detects only superficial sources, at less than approximately 10-mm depth. Intramuscular EMG can detect deep sources, but it is limited to sources within a few mm of the detection site. Conversely, ultrasound (US) images have high spatial resolution across the whole muscle cross-section. The activity of MNs can be extracted from US images due to the movements that MN activation generates in the innervated muscle fibers. Current US-based decomposition methods can accurately identify the location and average twitch induced by MN activity. However, they cannot accurately detect MN discharge times. Methods: Here, we present a method based on the convolutive blind source separation of US images to estimate MN discharge times with high accuracy. The method was validated across 10 participants using concomitant sEMG decomposition as the ground truth. Results: 140 unique MN spike trains were identified from US images, with a rate of agreement (RoA) with sEMG decomposition of 87.4 ± 10.3%. Over 50% of these MN spike trains had a RoA greater than 90%. Furthermore, with US, we identified additional MUs well beyond the sEMG detection volume, at up to >30 mm below the skin. Conclusion: The proposed method can identify discharges of MNs innervating muscle fibers in a large range of depths within the muscle from US images. Significance: The proposed methodology can non-invasively interface with the outer layers of the central nervous system innervating muscles across the full cross-section.

Journal article

Howe GA, Tang M-X, Rowlands CJ, 2023, Tailored photoacoustic apertures with superimposed optical holograms, Biomedical Optics Express, Vol: 14, Pages: 6361-6361, ISSN: 2156-7085

A new method of generating potentially arbitrary photoacoustic wavefronts with optical holograms is presented. This method uses nanosecond laser pulses at 1064 nm that are split into four time-delayed components by means of a configurable multipass optical delay apparatus, which serves to map the pulses onto phase-delayed regions of a given acoustic wavefront. A single spatial light modulator generates separate holograms for each component, which are imaged onto a photoacoustic transducer comprised of a thermoelastic polymer. As a proof of concept of the broader arbitrary wavefront construction technique, the spatially- and temporally-modulated holograms in this study produce a phased array effect that enables beam steering of the resulting acoustic pulse. For a first experimental demonstration of the method, as verified by simulation, the acoustic beam is steered in four directions by around 5 degrees.

Journal article

Huang B, Yan J, Morris M, Sinnett V, Somaiah Net al., 2023, Acceleration-based Kalman tracking for super-resolution ultrasound imaging in vivo, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 70, Pages: 1739-1748, ISSN: 0885-3010

Super-resolution ultrasound can image microvascular structure and flow at sub-wave-diffraction resolution based on localising and tracking microbubbles. Currently, tracking microbubbles accurately under limited imaging frame rates and high microbubble concentrations remains a challenge, especially under the effect of cardiac pulsatility and in highly curved vessels. In this study, an acceleration-incorporated microbubble motion model is introduced into a Kalman tracking framework. The tracking performance was evaluated using simulated microvasculature with different microbubble motion parameters, concentrations and acquisition frame rates, and in vivo human breast tumour ultrasound datasets. The simulation results show that the acceleration-based method outperformed the non-acceleration-based method at different levels of acceleration and acquisition frame rates and achieved significant improvement in true positive rate (up to 11.3%), false negative rate (up to 13.2%). The proposed method can also reduce errors in vasculature reconstruction via the acceleration-based nonlinear interpolation, compared with linear interpolation (up to 16.7 μm). The tracking results from temporally downsampled low frame rate in vivo datasets from human breast tumours show that the proposed method has better microbubble tracking performance than the baseline method, if using results from the initial high frame data as reference. Finally, the acceleration estimated from tracking results also provides a spatial speed gradient map that may contain extra valuable diagnostic information.

Journal article

Zhou X, Li Y, Zhu Q, Luo J, Cao L, Quetai J, Li F, Tang M-X, Wang Zet al., 2023, A Theragnostic HIFU Transducer and System for Inherently Registered Imaging and Therapy., IEEE Trans Biomed Eng, Vol: 70, Pages: 3413-3424

OBJECTIVE: One big challenge with high intensity focused ultrasound (HIFU) is the difficulty in accurate prediction of focal location due to the complex wave propagation in heterogeneous medium even with imaging guidance. This study aims to overcome this by combining therapy and imaging guidance with one single HIFU transducer using the vibro-acoustography (VA) strategy. METHODS: Based on the VA imaging method, a HIFU transducer consisting of 8 transmitting elements was proposed for therapy planning, treatment and evaluation. Inherent registration between the therapy and imaging created unique spatial consistence in HIFU transducer's focal region in the above three procedures. Performance of this imaging modality was first evaluated through in-vitro phantoms. In-vitro and ex-vivo experiments were then designed to demonstrate the proposed dual-mode system's ability in conducting accurate thermal ablation. RESULTS: Point spread function of the HIFU-converted imaging system had a full wave half maximum of about 1.2 mm in both directions at a transmitting frequency of 1.2 MHz, which outperformed the conventional ultrasound imaging (3.15 MHz) in in-vitro situation. Image contrast was also tested on the in-vitro phantom. Various geometric patterns could be accurately 'burned out' on the testing objects by the proposed system both in vitro and ex vivo. CONCLUSION: Implementation of imaging and therapy with one HIFU transducer in this manner is feasible and it has potential as a novel strategy for addressing the long-standing problem in the HIFU therapy, possibly pushing this non-invasive technique forward towards wider clinical applications.

Journal article

Kawara S, Cunningham B, Bezer J, Neelima KC, Zhu J, Tang M-X, Ishihara J, Choi JJ, Au SHet al., 2023, Capillary-scale hydrogel microchannel networks by wire templating, Small, Vol: 19, ISSN: 1613-6810

Microvascular networks are essential for the efficient transport of nutrients, waste products, and drugs throughout the body. Wire-templating is an accessible method for generating laboratory models of these blood vessel networks, but it has difficulty fabricating microchannels with diameters of ten microns and narrower, a requirement for modeling human capillaries. This study describes a suite of surface modification techniques to selectively control the interactions amongst wires, hydrogels, and world-to-chip interfaces. This wire templating method enables the fabrication of perfusable hydrogel-based rounded cross-section capillary-scale networks whose diameters controllably narrow at bifurcations down to 6.1 ± 0.3 microns in diameter. Due to its low cost, accessibility, and compatibility with a wide range of common hydrogels of tunable stiffnesses such as collagen, this technique may increase the fidelity of experimental models of capillary networks for the study of human health and disease.

Journal article

Robins TC, Cueto C, Cudeiro J, Bates O, Agudo OC, Strong G, Guasch L, Warner M, Tang M-Xet al., 2023, Dual-Probe Transcranial Full-Waveform Inversion: A Brain Phantom Feasibility Study, ULTRASOUND IN MEDICINE AND BIOLOGY, Vol: 49, Pages: 2302-2315, ISSN: 0301-5629

Journal article

Cueto C, Bates O, Strong G, Cudeiro J, Robins TC, Luporini F, Agudo OC, Gorman G, Guasch L, Tang M-Xet al., 2023, A flexible software platform for high-performance ultrasound computed tomography Computer Methods and Programs in Biomedicine (vol 221, 106855, 2022), COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, Vol: 240, ISSN: 0169-2607

Journal article

Yan J, Wang B, Riemer K, Hansen-Shearer J, Lerendegui M, Toulemonde M, Rowlands CJ, Weinberg PD, Tang Met al., 2023, Fast 3D super-resolution ultrasound with adaptive weight-based beamforming, IEEE Transactions on Biomedical Engineering, Vol: 70, Pages: 2752-2761, ISSN: 0018-9294

Objective: Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. Method: This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. Results: Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. Conclusion: The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. Significance: Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.

Journal article

Nie L, Toulemonde M, Tang MX, Freear S, Harput Set al., 2023, A human ear-inspired ultrasonic transducer (HEUT) for 3D localization of sub-wavelength scatterers, Applied Physics Letters, Vol: 123, ISSN: 0003-6951

The proposed technology aims to enable 3D localization of scatterers using single element ultrasonic transducers, which are traditionally limited to 1D measurements. This is achieved by designing a bespoke acoustic lens with a spiral-shaped pattern similar to the human outer ear, a shape that has evolved for sound source localization. This lens breaks the surface symmetry of the transducer, allowing ultrasonic waves arriving from different directions to be encoded in a certain way that can later be decoded to extract directional information. By employing the mechanism of spatial-encoding of the received signals and decoding via signal processing, the location of sub-wavelength scatterers can be detected in 3D with a single measurement for sparsely distributed scatterers. The proposed technology is first verified through a simulation study, and then 3D printed acoustic lenses are used to demonstrate the 3D encoding functionality of the Human Ear-inspired Ultrasonic Transducer (HEUT) experimentally. A framework is created to localize scatterers in 3D by processing received signals acquired by a HEUT prototype. With this technology, a single transducer can obtain multi-dimensional information with a single pulse-echo measurement, reducing the number of elements required for performing 3D ultrasound localization. The proposed spatial-encoding and -decoding technology can be applied to other wave-based imaging methods to develop affordable, practical, and compact sensing devices.

Journal article

Seligman H, Patel SB, Alloula A, Howard JP, Cook CM, Ahmad Y, de Waard GA, Pinto ME, van de Hoef TP, Rahman H, Kelshiker MA, Rajkumar CA, Foley M, Nowbar AN, Mehta S, Toulemonde M, Tang M-X, Al-Lamee R, Sen S, Cole G, Nijjer S, Escaned J, Van Royen N, Francis DP, Shun-Shin MJ, Petraco Ret al., 2023, Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment., Eur Heart J Digit Health, Vol: 4, Pages: 291-301

AIMS: Coronary flow reserve (CFR) assessment has proven clinical utility, but Doppler-based methods are sensitive to noise and operator bias, limiting their clinical applicability. The objective of the study is to expand the adoption of invasive Doppler CFR, through the development of artificial intelligence (AI) algorithms to automatically quantify coronary Doppler quality and track flow velocity. METHODS AND RESULTS: A neural network was trained on images extracted from coronary Doppler flow recordings to score signal quality and derive values for coronary flow velocity and CFR. The outputs were independently validated against expert consensus. Artificial intelligence successfully quantified Doppler signal quality, with high agreement with expert consensus (Spearman's rho: 0.94), and within individual experts. Artificial intelligence automatically tracked flow velocity with superior numerical agreement against experts, when compared with the current console algorithm [AI flow vs. expert flow bias -1.68 cm/s, 95% confidence interval (CI) -2.13 to -1.23 cm/s, P < 0.001 with limits of agreement (LOA) -4.03 to 0.68 cm/s; console flow vs. expert flow bias -2.63 cm/s, 95% CI -3.74 to -1.52, P < 0.001, 95% LOA -8.45 to -3.19 cm/s]. Artificial intelligence yielded more precise CFR values [median absolute difference (MAD) against expert CFR: 4.0% for AI and 7.4% for console]. Artificial intelligence tracked lower-quality Doppler signals with lower variability (MAD against expert CFR 8.3% for AI and 16.7% for console). CONCLUSION: An AI-based system, trained by experts and independently validated, could assign a quality score to Doppler traces and derive coronary flow velocity and CFR. By making Doppler CFR more automated, precise, and operator-independent, AI could expand the clinical applicability of coronary microvascular assessment.

Journal article

Riemer K, Toulemonde M, Yan J, Lerendegui M, Stride E, Weinberg PD, Dunsby C, Tang M-Xet al., 2023, Fast and selective super-resolution ultrasound in vivo with acoustically activated nanodroplets, IEEE Transactions on Medical Imaging, Vol: 42, Pages: 1056-1067, ISSN: 0278-0062

Perfusion by the microcirculation is key to the development, maintenance and pathology of tissue. Its measurement with high spatiotemporal resolution is consequently valuable but remains a challenge in deep tissue. Ultrasound Localization Microscopy (ULM) provides very high spatiotemporal resolution but the use of microbubbles requires low contrast agent concentrations, a long acquisition time, and gives little control over the spatial and temporal distribution of the microbubbles. The present study is the first to demonstrate Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM) and fast-AWSALM for in vivo super-resolution ultrasound imaging, offering contrast on demand and vascular selectivity. Three different formulations of acoustically activatable contrast agents were used. We demonstrate their use with ultrasound mechanical indices well within recommended safety limits to enable fast on-demand sparse activation and destruction at very high agent concentrations. We produce super-localization maps of the rabbit renal vasculature with acquisition times between 5.5 s and 0.25 s, and a 4-fold improvement in spatial resolution. We present the unique selectivity of AWSALM in visualizing specific vascular branches and downstream microvasculature, and we show super-localized kidney structures in systole (0.25 s) and diastole (0.25 s) with fast-AWSALM outdoing microbubble based ULM. In conclusion, we demonstrate the feasibility of fast and selective measurement of microvascular dynamics in vivo with subwavelength resolution using ultrasound and acoustically activatable nanodroplet contrast agents.

Journal article

Rowland EM, Riemer KA, Lichtenstein KEVIN, Tang M-X, Weinberg PDet al., 2023, NON-INVASIVE ASSESSMENT BY B-MODE ULTRASOUND OF ARTERIAL PULSE WAVE INTENSITY AND ITS REDUCTION DURING VENTRICULAR DYSFUNCTION, ULTRASOUND IN MEDICINE AND BIOLOGY, Vol: 49, Pages: 473-488, ISSN: 0301-5629

Journal article

Lubel E, Sgambato BG, Rohlen R, Ibanez J, Barsakcioglu DY, Tang M-X, Farina Det al., 2023, Non-Linearity in Motor Unit Velocity Twitch Dynamics: Implications for Ultrafast Ultrasound Source Separation., IEEE Trans Neural Syst Rehabil Eng, Vol: 31, Pages: 3699-3710

Ultrasound (US) muscle image series can be used for peripheral human-machine interfacing based on global features, or even on the decomposition of US images into the contributions of individual motor units (MUs). With respect to state-of-the-art surface electromyography (sEMG), US provides higher spatial resolution and deeper penetration depth. However, the accuracy of current methods for direct US decomposition, even at low forces, is relatively poor. These methods are based on linear mathematical models of the contributions of MUs to US images. Here, we test the hypothesis of linearity by comparing the average velocity twitch profiles of MUs when varying the number of other concomitantly active units. We observe that the velocity twitch profile has a decreasing peak-to-peak amplitude when tracking the same target motor unit at progressively increasing contraction force levels, thus with an increasing number of concomitantly active units. This observation indicates non-linear factors in the generation model. Furthermore, we directly studied the impact of one MU on a neighboring MU, finding that the effect of one source on the other is not symmetrical and may be related to unit size. We conclude that a linear approximation is partly limiting the decomposition methods to decompose full velocity twitch trains from velocity images, highlighting the need for more advanced models and methods for US decomposition than those currently employed.

Journal article

Tang M, 2022, Super-resolution ultrasound localization microscopy of microvascular structure and flow for distinguishing metastatic lymph nodes – an initial human study, Ultraschall in der Medizin, Vol: 43, Pages: 592-598, ISSN: 0172-4614

Purpose Detecting and distinguishing metastatic lymph nodes (LNs) from those with benign lymphadenopathy are crucial for cancer diagnosis and prognosis but remain a clinical challenge. A recent advance in super-resolution ultrasound (SRUS) through localizing individual microbubbles has broken the diffraction limit and tracking enabled in vivo noninvasive imaging of vascular morphology and flow dynamics at a microscopic level. In this study we hypothesize that SRUS enables quantitative markers to distinguish metastatic LNs from benign ones in patients with lymphadenopathy.Materials and Methods Clinical contrast-enhanced ultrasound image sequences of LNs from 6 patients with lymph node metastasis and 4 with benign lymphadenopathy were acquired and motion-corrected. These were then used to generate super-resolution microvascular images and super-resolved velocity maps. From these SRUS images, morphological and functional measures were obtained including micro-vessel density, fractal dimension, mean flow speed, and Local Flow Direction Irregularity (LFDI) measuring the variance in local flow direction. These measures were compared between pathologically proven reactive and metastasis LNs.Results Our initial results indicate that the difference in the indicator of flow irregularity (LFDI) derived from the SRUS images is statistically significant between the two groups. The LFDI is 60% higher in metastatic LNs compared with reactive nodes.Conclusion This pilot study demonstrates the feasibility of super-resolution ultrasound for clinical imaging of lymph nodes and the potential of using the irregularity of local blood flow directions afforded by SRUS for the characterization of LNs.

Journal article

Lubel E, Sgambato BG, Barsakcioglu DY, Ibanez J, Tang M-X, Farina Det al., 2022, Kinematics of individual muscle units in natural contractions measured <i>in vivo</i> using ultrafast ultrasound, JOURNAL OF NEURAL ENGINEERING, Vol: 19, ISSN: 1741-2560

Journal article

Cudeiro-blanco J, Cueto C, Bates O, Strong G, Robins T, Toulemonde M, Warner M, Tang M-X, Agudo OC, Guasch Let al., 2022, DESIGN AND CONSTRUCTION OF A LOW-FREQUENCY ULTRASOUND ACQUISITION DEVICE FOR 2-D BRAIN IMAGING USING FULL-WAVEFORM INVERSION, ULTRASOUND IN MEDICINE AND BIOLOGY, Vol: 48, Pages: 1995-2008, ISSN: 0301-5629

Journal article

Yan J, Zhang T, Broughton-Venner J, Huang P, Tang Met al., 2022, Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking, IEEE Transactions on Medical Imaging, Vol: 41, Pages: 1938-1947, ISSN: 0278-0062

Ultrasound super-resolution imaging through localisation and tracking of microbubbles can achieve sub-wave-diffraction resolution in mapping both micro-vascular structure and flow dynamics in deep tissue in vivo. Currently, it is still challenging to achieve high accuracy in localisation and tracking particularly with limited imaging frame rates and in the presence of high bubble concentrations. This study introduces microbubble image features into a Kalman tracking framework, and makes the framework compatible with sparsity-based deconvolution to address these key challenges. The performance of the method is evaluated on both simulations using individual bubble signals segmented from in vivo data and experiments on a mouse brain and a human lymph node. The simulation results show that the deconvolution not only significantly improves the accuracy of isolating overlapping bubbles, but also preserves some image features of the bubbles. The combination of such features with Kalman motion model can achieve a significant improvement in tracking precision at a low frame rate over that using the distance measure, while the improvement is not significant at the highest frame rate. The in vivo results show that the proposed framework generates SR images that are significantly different from the current methods with visual improvement, and is more robust to high bubble concentrations and low frame rates.

Journal article

Hirata S, Hagihara Y, Yoshida K, Yamaguchi T, Toulemonde MEG, Tang M-Xet al., 2022, Evaluation of contrast enhancement ultrasound images of Sonazoid microbubbles in tissue-mimicking phantom obtained by optimal Golay pulse compression, JAPANESE JOURNAL OF APPLIED PHYSICS, Vol: 61, ISSN: 0021-4922

Journal article

Cueto C, Bates O, Strong G, Cudeiro J, Luporini F, Calderón Agudo Ò, Gorman G, Guasch L, Tang M-Xet al., 2022, Stride: a flexible software platform for high-performance ultrasound computed tomography, Computer Methods and Programs in Biomedicine, Vol: 221, ISSN: 0169-2607

BACKGROUND AND OBJECTIVE: Advanced ultrasound computed tomography techniques like full-waveform inversion are mathematically complex and orders of magnitude more computationally expensive than conventional ultrasound imaging methods. This computational and algorithmic complexity, and a lack of open-source libraries in this field, represent a barrier preventing the generalised adoption of these techniques, slowing the pace of research, and hindering reproducibility. Consequently, we have developed Stride, an open-source Python library for the solution of large-scale ultrasound tomography problems. METHODS: On one hand, Stride provides high-level interfaces and tools for expressing the types of optimisation problems encountered in medical ultrasound tomography. On the other, these high-level abstractions seamlessly integrate with high-performance wave-equation solvers and with scalable parallelisation routines. The wave-equation solvers are generated automatically using Devito, a domain-specific language, and the parallelisation routines are provided through the custom actor-based library Mosaic. RESULTS: We demonstrate the modelling accuracy achieved by our wave-equation solvers through a comparison (1) with analytical solutions for a homogeneous medium, and (2) with state-of-the-art modelling software applied to a high-contrast, complex skull section. Additionally, we show through a series of examples how Stride can handle realistic numerical and experimental tomographic problems, in 2D and 3D, and how it can scale robustly from a local multi-processing environment to a multi-node high-performance cluster. CONCLUSIONS: Stride enables researchers to rapidly and intuitively develop new imaging algorithms and to explore novel physics without sacrificing performance and scalability. This will lead to faster scientific progress in this field and will significantly ease clinical translation.

Journal article

Zhou X, Wang Y, Li Y, Zhao Y, Shan T, Gong X, Li F, Tang M-X, Wang Zet al., 2022, Acoustic Beam Mapping for Guiding HIFU Therapy In Vivo Using Sub-Therapeutic Sound Pulse and Passive Beamforming, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, Vol: 69, Pages: 1663-1673, ISSN: 0018-9294

Journal article

Bates O, Guasch L, Strong G, Robins TC, Calderon-Agudo O, Cueto C, Cudeiro J, Tang Met al., 2022, A probabilistic approach to tomography and adjoint state methods, with an application to full waveform inversion in medical ultrasound, INVERSE PROBLEMS, Vol: 38, ISSN: 0266-5611

Journal article

Weinberg P, Riemer K, Rowland E, Broughton-Venner J, Leow CH, Tang Met al., 2022, Contrast agent free assessment of blood flow and wall shear stress in the rabbit aorta using ultrasound image velocimetry, Ultrasound in Medicine and Biology, Vol: 48, Pages: 437-449, ISSN: 0301-5629

Blood flow velocity and wall shear stress (WSS) influence and are influencedby vascular disease. Their measurement is consequently useful in the laboratory and clinic. Contrast enhanced ultrasound image velocimetry (UIV) canestimate them accurately but the need to inject contrast agents limits utility. Singular value decomposition and high frame rate imaging may rendercontrast agents dispensable. Here we determined whether contrast agent freeUIV can measure flow and WSS. In simulation, accurate measurements wereachieved with a signal-to-noise ratio of 13.5 dB or higher. Signal intensity inthe rabbit aorta increased monotonically with mechanical index and was lowest during stagnant flow and uneven across the vessel. In vivo measurementswith contrast free and contrast enhanced UIV differed by 4.4 % and 1.9 % forvelocity magnitude and angle and by 9.47 % for WSS. Bland–Altman analysis of waveforms showed good agreement between contrast free and contrast enhanced UIV. In five rabbits the root-mean-square error was as low as 0.022m/s (0.81 %) and 0.11 Pa (1.7 %). This study demonstrates that with anoptimised protocol, UIV can assess flow and WSS without contrast agents.Unlike contrast enhanced UIV, it could be routinely employed.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00495851&limit=30&person=true