Imperial College London

Professor Mike Robb, FRS

Faculty of Natural SciencesDepartment of Chemistry

Chair in Chemistry



+44 (0)20 7594 5757mike.robb Website




301cMolecular Sciences Research HubWhite City Campus





Our work involves development of the metholodgy of quantum chemistry and computational studies of photochemical reactivity.

Method development work involves the development of electronic structure methods and ab intio molecular dynamics. We are a developer of the Gaussian program for electronic structure computations.

Applications to photochemical reactivity are focused on problems involving at least two potential surfaces, known as non-adiabatic chemistry, including photochemistry and electron transfer. This work has been directed at many important areas of experimental development. Examples include classical mechanistic organic photochemistry, photoinduced electron transfer, inorganic femtochemistry, energy transfer mechanisms in bichromophoric systems, photochemical stability, intramolecular quenching, photochromic systems, polymer photophysics, and biological femtochemistry. 

Recent work has been focussed on problems where electronic and nuclear dynamics can be asynchronous.  An example is charge migration. Here laser excitation may excite many states and one can observe fast electron dynamics.

We have recently collected some of this work in a book (Theoretical Chemistry for Electronic Excited States) published by the RSC. (  Some additional background material can be found at



Tran T, Jenkins A, Worth GA, et al., 2020, The Quantum-Ehrenfest method with the inclusion of an IR pulse: Application to electron dynamics of the allene radical cation, Journal of Chemical Physics, Vol:153, ISSN:0021-9606

Tran T, Segarra-Martí J, Bearpark M, et al., 2019, Molecular vertical excitation energies studied with first-order RASSCF (RAS[1,1]): balancing covalent and ionic excited states, Journal of Physical Chemistry A, Vol:123, ISSN:1089-5639, Pages:5223-5230

Robb M, Jenkins AJ, 2019, The Damped Ehrenfest (D-Eh) method: Application to non-adiabatic reaction paths, Computational and Theoretical Chemistry, Vol:1152, ISSN:0166-1280, Pages:53-61

Spinlove KE, Richings GW, Robb MA, et al., 2018, Curve crossing in a manifold of coupled electronic states: direct quantum dynamics simulations of formamide, Faraday Discussions, Vol:212, ISSN:1359-6640, Pages:191-215

Jenkins AJ, Spinlove K, Vacher M, et al., 2018, The Ehrenfest method with fully quantum nuclear motion (Qu-Eh): application to charge migration in radical cations, Journal of Chemical Physics, Vol:149, ISSN:0021-9606

More Publications