Imperial College London

Professor Nigel Brandon OBE FREng

Faculty of Engineering

Dean of the Faculty of Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 8600n.brandon Website

 
 
//

Location

 

2.06Faculty BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

399 results found

Ouyang M, Boldrin P, Maher RC, Chen X, Liu X, Cohen LF, Brandon NPet al., 2019, A mechanistic study of the interactions between methane and nickel supported on doped ceria, Applied Catalysis B: Environmental, Vol: 248, Pages: 332-340, ISSN: 0926-3373

© 2019 Elsevier B.V. A novel combined method using modified methane pulses and in-situ Raman spectroscopy together with mass spectrometry is applied to impregnated Ni/gadolinium-doped ceria (CGO). The partial oxidation of methane is deduced to proceed via a Mars-van-Krevelen type mechanism composed of initial methane decomposition together with carbon oxidation by oxygen from CGO. The critical role of the ceria surface and the bulk oxygen in the reaction is defined in detail. Oxygen is a necessary reactant in the reaction, as well as inhibiting carbon deposition. Oxygen spill-over is the driving force for the carbon oxidation and the ceria surface oxygen is resupplied by bulk oxygen after depletion. Bulk migration of oxygen to the surface is the rate-determining step. We also demonstrate that the ceria oxygen stoichiometry significantly affects the type of reaction and the rate of reaction between methane and Ni/CGO: The total oxidation of methane happens only when the oxygen stoichiometry is high while the oxygen spill-over rate decreases with decreasing oxygen stoichiometry, which reduces the rate of carbon elimination and results in reduction in the rate of methane oxidation. This work lays out a comprehensive evaluation methodology and provides important insights for future design of methane oxidation catalysts for solid oxide fuel cells, and more widely for methane reforming with different oxidants (steam, CO 2 , NO 2 etc).

JOURNAL ARTICLE

Crow DJG, Balcombe P, Brandon N, Hawkes ADet al., 2019, Assessing the impact of future greenhouse gas emissions from natural gas production, SCIENCE OF THE TOTAL ENVIRONMENT, Vol: 668, Pages: 1242-1258, ISSN: 0048-9697

JOURNAL ARTICLE

Song B, Bertei A, Wang X, Cooper SJ, Ruiz-Trejo E, Chowdhury R, Podor R, Brandon NPet al., 2019, Unveiling the mechanisms of solid-state dewetting in Solid Oxide Cells with novel 2D electrodes, Journal of Power Sources, Vol: 420, Pages: 124-133, ISSN: 0378-7753

© 2019 The Authors During the operation of Solid Oxide Cell (SOC) fuel electrodes, the mobility of nickel can lead to significant changes in electrode morphology, with accompanying degradation in electrochemical performance. In this work, the dewetting of nickel films supported on yttria-stabilized zirconia (YSZ), hereafter called 2D cells, is studied by coupling in-situ environmental scanning electron microscopy (E-SEM), image analysis, cellular automata simulation and electrochemical impedance spectroscopy (EIS). Analysis of experimental E-SEM images shows that Ni dewetting causes an increase in active triple phase boundary (aTPB) length up to a maximum, after which a sharp decrease in aTPB occurs due to Ni de-percolation. This microstructural evolution is consistent with the EIS response, which shows a minimum in polarization resistance followed by a rapid electrochemical degradation. These results reveal that neither evaporation-condensation nor surface diffusion of Ni are the main mechanisms of dewetting at 560–800 °C. Rather, the energy barrier for pore nucleation within the dense Ni film appears to be the most important factor. This sheds light on the relevant mechanisms and interfaces that must be controlled to reduce the electrochemical degradation of SOC electrodes induced by Ni dewetting.

JOURNAL ARTICLE

Chen X, Liu X, Ouyang M, Chen J, Taiwo O, Xia Y, Childs PRN, Brandon NP, Wu Bet al., 2019, Multi-metal 4D printing with a desktop electrochemical 3D printer, SCIENTIFIC REPORTS, Vol: 9, ISSN: 2045-2322

JOURNAL ARTICLE

Liu X, Taiwo OO, Yin C, Ouyang M, Chowdhury R, Wang B, Wang H, Wu B, Brandon NP, Wang Q, Cooper SJet al., 2019, Aligned lonogel Electrolytes for High-Temperature Supercapacitors, ADVANCED SCIENCE, Vol: 6, ISSN: 2198-3844

JOURNAL ARTICLE

Song W, Liu X, Wu B, Brandon N, Shearing PR, Brett DJL, Xie F, Riley DJet al., 2019, Sn@C evolution from yolk-shell to core-shell in carbon nanofibers with suppressed degradation of lithium storage, ENERGY STORAGE MATERIALS, Vol: 18, Pages: 229-237, ISSN: 2405-8297

JOURNAL ARTICLE

Yufit V, Tariq F, Eastwood DS, Biton M, Wu B, Lee PD, Brandon NPet al., 2019, Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries, JOULE, Vol: 3, Pages: 485-502, ISSN: 2542-4351

JOURNAL ARTICLE

Trudgeon DP, Qiu K, Li X, Mallick T, Taiwo OO, Chakrabarti B, Yufit V, Brandon NP, Crevillen-Garcia D, Shah Aet al., 2019, Screening of effective electrolyte additives for zinc-based redox flow battery systems, JOURNAL OF POWER SOURCES, Vol: 412, Pages: 44-54, ISSN: 0378-7753

JOURNAL ARTICLE

Speirs J, Balcombe P, Blomerus P, Stettler M, Brandon N, Hawkes Aet al., 2019, Can natural gas reduce emissions from transport?: Heavy goods vehicles and shipping

REPORT

Rubio-Garcia J, Kucernak A, Zhao D, Li D, Fahy K, Yufit V, Brandon N, Gomez-Gonzalez Met al., 2019, Hydrogen/manganese hybrid redox flow battery, Journal of Physics: Energy, Vol: 1, Pages: 015006-015006

JOURNAL ARTICLE

Budinis S, Krevor S, Mac Dowell N, Brandon N, Hawkes Aet al., 2018, An assessment of CCS costs, barriers and potential, ENERGY STRATEGY REVIEWS, Vol: 22, Pages: 61-81, ISSN: 2211-467X

JOURNAL ARTICLE

Balcombe P, Speirs JF, Brandon NP, Hawkes ADet al., 2018, Methane emissions: choosing the right climate metric and time horizon, ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, Vol: 20, Pages: 1323-1339, ISSN: 2050-7887

JOURNAL ARTICLE

Crow DJG, Anderson K, Hawkes AD, Brandon Net al., 2018, Impact of Drilling Costs on the US Gas Industry: Prospects for Automation, ENERGIES, Vol: 11, ISSN: 1996-1073

JOURNAL ARTICLE

Zhang D, Cai Q, Taiwo OO, Yufit V, Brandon NP, Gu Set al., 2018, The effect of wetting area in carbon paper electrode on the performance of vanadium redox flow batteries: A three-dimensional lattice Boltzmann study, ELECTROCHIMICA ACTA, Vol: 283, Pages: 1806-1819, ISSN: 0013-4686

JOURNAL ARTICLE

Tariq F, Rubio-Garcia J, Yufit V, Bertei A, Chakrabarti BK, Kucernak A, Brandon Net al., 2018, Uncovering the mechanisms of electrolyte permeation in porous electrodes for redox flow batteries through real time in situ 3D imaging, SUSTAINABLE ENERGY & FUELS, Vol: 2, Pages: 2068-2080, ISSN: 2398-4902

JOURNAL ARTICLE

Bertei A, Yufit V, Tariq F, Brandon NPet al., 2018, A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes, JOURNAL OF POWER SOURCES, Vol: 396, Pages: 246-256, ISSN: 0378-7753

JOURNAL ARTICLE

Song B, Ruiz-Trejo E, Brandon NP, 2018, Enhanced mechanical stability of Ni-YSZ scaffold demonstrated by nanoindentation and Electrochemical Impedance Spectroscopy, JOURNAL OF POWER SOURCES, Vol: 395, Pages: 205-211, ISSN: 0378-7753

JOURNAL ARTICLE

Balcombe P, Speirs J, Johnson E, Martin J, Brandon N, Hawkes Aet al., 2018, The carbon credentials of hydrogen gas networks and supply chains, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, Vol: 91, Pages: 1077-1088, ISSN: 1364-0321

JOURNAL ARTICLE

Speirs J, Balcombe P, Johnson E, Martin J, Brandon N, Hawkes Aet al., 2018, A greener gas grid: What are the options, ENERGY POLICY, Vol: 118, Pages: 291-297, ISSN: 0301-4215

JOURNAL ARTICLE

Liu X, Marlow MN, Cooper SJ, Song B, Chen X, Brandon NP, Wu Bet al., 2018, Flexible all-fiber electrospun supercapacitor, JOURNAL OF POWER SOURCES, Vol: 384, Pages: 264-269, ISSN: 0378-7753

JOURNAL ARTICLE

Few S, Schmidt O, Offer GJ, Brandon N, Nelson J, Gambhir Aet al., 2018, Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations, ENERGY POLICY, Vol: 114, Pages: 578-590, ISSN: 0301-4215

JOURNAL ARTICLE

Mazur C, Offer GJ, Contestabile M, Brandon NBet al., 2018, Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport, SUSTAINABILITY, Vol: 10, ISSN: 2071-1050

JOURNAL ARTICLE

Chen Z, Wang X, Brandon N, Atkinson Aet al., 2018, Numerical Study of Solid Oxide Fuel Cell Contacting Mechanics, FUEL CELLS, Vol: 18, Pages: 42-50, ISSN: 1615-6846

JOURNAL ARTICLE

Balcombe P, Brandon NP, Hawkes AD, 2018, Characterising the distribution of methane and carbon dioxide emissions from the natural gas supply chain, JOURNAL OF CLEANER PRODUCTION, Vol: 172, Pages: 2019-2032, ISSN: 0959-6526

JOURNAL ARTICLE

Song B, Ruiz-Trejo E, Bertei A, Brandon NPet al., 2018, Quantification of the degradation of Ni-YSZ anodes upon redox cycling, JOURNAL OF POWER SOURCES, Vol: 374, Pages: 61-68, ISSN: 0378-7753

JOURNAL ARTICLE

Hack J, Heenan TMM, Iacoviello F, Mansor N, Meyer Q, Shearing P, Brandon N, Brett DJLet al., 2018, A Structure and Durability Comparison of Membrane Electrode Assembly Fabrication Methods: Self-Assembled Versus Hot-Pressed, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 165, Pages: F3045-F3052, ISSN: 0013-4651

JOURNAL ARTICLE

Chen X, Liu X, Childs P, Brandon N, Wu Bet al., 2018, Design and fabrication of a low cost desktop electrochemical 3D printer, Pages: 395-400, ISSN: 2424-8967

Copyright © 2018 by Nanyang Technological University. Additive manufacturing (AM) (3D printing) is the process of creating 3D objects from digital models through the layer by layer deposition of materials. Electrochemical additive manufacturing (ECAM) is a relatively new technique which can create metallic components based depositing adherent layers of metal ions onto the surface of conductive substrate. In this paper, the design considerations for a meniscus confined ECAM approach is presented which demonstrates superior print speeds to equivalent works. This is achieved through the increase of the meniscus diameter to 400 \im which was achieved through the integration of a porous sponge into the print head to balance the hydraulic head of the electrolyte. Other piston based methods of controlling the electrolyte meniscus are discussed.

CONFERENCE PAPER

Bertei A, Ruiz-Trejo E, Clematis D, Carpanese MP, Barbucci A, Nicolella C, Brandon Net al., 2018, A perspective on the role of the three-phase boundary in solid oxide fuel cell electrodes, Bulgarian Chemical Communications, Vol: 50, Pages: 31-38, ISSN: 0861-9808

© 2018 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria. Within composite electrodes for solid oxide fuel cells (SOFCs), electrochemical reactions take place in the proximity of the so-called three-phase boundary (TPB), the contact perimeter where the electron-conducting, the ionconducting and the porous phases meet. Strictly speaking, the TPB is a line and efforts have been made to increase its length per unit of electrode volume in order to reduce the activation losses. In this communication, by integrating physically-based modelling, 3D tomography and electrochemical impedance spectroscopy (EIS), a renovated perspective on electrocatalysis in SOFCs is offered, showing that the electrochemical reactions take place within an extended region around the geometrical TPB line. Such an extended region is in the order of 4 nm in Ni/Sc0.2Zr0.9O 2 .1 (Ni/ScSZ) anodes while approaches hundreds of nanometres in La0.8Sr0.2MnO 3 -x/Y0.16Zr0.92O 2 .08 (LSM/YSZ) cathodes. These findings have significant implications for preventing the degradation of nanostructured anodes, which is due to the coarsening of the fractal roughness of Ni nanoparticles, as well as for the optimisation of composite cathodes, indicating that the adsorption and surface diffusion of oxygen limit the rate of the oxygen reduction reaction (ORR). In both anodes and cathodes, the results point out that the surface properties of the materials are key in determining the performance and lifetime of SOFC electrodes.

JOURNAL ARTICLE

Gadoue S, Chen K-W, Mitcheson P, Yufit V, Brandon Net al., 2018, Electrochemical Impedance Spectroscopy State of Charge Measurement for Batteries using Power Converter Modulation, 9th International Renewable Energy Congress (IREC), Publisher: IEEE, ISSN: 2378-3435

CONFERENCE PAPER

Jing R, Wang M, Wang W, Brandon N, Li N, Chen J, Zhao Yet al., 2017, Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system, ENERGY CONVERSION AND MANAGEMENT, Vol: 154, Pages: 365-379, ISSN: 0196-8904

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&amp%3bid=00170077&amp%3brespub-action=search.html&amp%3bperson=true&amp%3bpage=4&respub-action=search.html&id=00170077&person=true