Imperial College London

Dr Nick Brooks

Faculty of Natural SciencesDepartment of Chemistry

Senior Lecturer



+44 (0)20 7594 2677n.brooks Website




545aChemistrySouth Kensington Campus





Dr Nick Brooks is a Senior Lecturer in the Department of Chemistry, Imperial College London.

My group's research focuses on the effect of high pressure on the structure and micromechanics of biological systems, and dynamic structural changes in soft condensed matter. Coupled to these research aims, I have a strong interest in advanced instrumentation and technique development.

I am a leading member of the Membrane Biophysics Platform and the EPSRC "Capitals" programme grant, a large-scale collaboration between Imperial College London, University of Cambridge, Durham University, University of Leeds and University of Nottingham which is working at the forefront of the emerging field of molecular membrane engineering to design and construct new biologically-inspired devices and systems based on lipid bilayer structures. This will revolutionise the design and fabrication of smart, soft materials and in the longer term, will lead to a paradigm shift in areas such as nanomedicine, bioelectronics, biological computing devices and synthetic organelles.

Much of our work is underpinned by development of new instrumentation (particularly high pressure platforms) to access experiments that were not previously possible. We have developed world-class systems for high pressure and pressure-jump microscopy and this has led to collaborations across the UK, Europe and USA. Having established an internationally leading pressure-jump facility for small angle X-ray diffraction at Diamond Light Source, we have been involved in the development of further related facilities at both Diamond and ESRF as well as a range of synchrotron based sample environments for probing structural changes in soft materials in response to triggers including solvent environment and electric field.



de Bruin A, Friddin MS, Elani Y, et al., A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs), Rsc Advances, ISSN:2046-2069

Barlow NE, Smpokou E, Friddin MS, et al., 2017, Engineering plant membranes using droplet interface bilayers, Biomicrofluidics, Vol:11, ISSN:1932-1058

Brady RA, Brooks NJ, Cicuta P, et al., 2017, Crystallization of Amphiphilic DNA C-Stars., Nano Lett, Vol:17, Pages:3276-3281

Brooks NJ, Castiglione F, Doherty CM, et al., 2017, Linking the structures, free volumes, and properties of ionic liquid mixtures, Chemical Science, Vol:8, ISSN:2041-6520, Pages:6359-6374

Cornell CE, McCarthy NLC, Levental KR, et al., 2017, n-Alcohol Length Governs Shift in L-o-L-d Mixing Temperatures in Synthetic and Cell-Derived Membranes, Biophysical Journal, Vol:113, ISSN:0006-3495, Pages:1200-1211

More Publications