Imperial College London

Dr Nick Brooks

Faculty of Natural SciencesDepartment of Chemistry

Senior Lecturer



+44 (0)20 7594 2677n.brooks Website




545aChemistrySouth Kensington Campus





Dr Nick Brooks is a Senior Lecturer in the Department of Chemistry, Imperial College London.

My group's research focuses on the effect of high pressure on the structure and micromechanics of biological systems, and dynamic structural changes in soft condensed matter. Coupled to these research aims, I have a strong interest in advanced instrumentation and technique development.

I am a leading member of the Membrane Biophysics Platform and the EPSRC "Capitals" programme grant, a large-scale collaboration between Imperial College London, University of Cambridge, Durham University, University of Leeds and University of Nottingham which is working at the forefront of the emerging field of molecular membrane engineering to design and construct new biologically-inspired devices and systems based on lipid bilayer structures. This will revolutionise the design and fabrication of smart, soft materials and in the longer term, will lead to a paradigm shift in areas such as nanomedicine, bioelectronics, biological computing devices and synthetic organelles.

Much of our work is underpinned by development of new instrumentation (particularly high pressure platforms) to access experiments that were not previously possible. We have developed world-class systems for high pressure and pressure-jump microscopy and this has led to collaborations across the UK, Europe and USA. Having established an internationally leading pressure-jump facility for small angle X-ray diffraction at Diamond Light Source, we have been involved in the development of further related facilities at both Diamond and ESRF as well as a range of synchrotron based sample environments for probing structural changes in soft materials in response to triggers including solvent environment and electric field.



Koch M, Wright KE, Otto O, et al., 2017, Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion., Proc Natl Acad Sci U S A, Vol:114, Pages:4225-4230

Bolognesi G, Friddin MS, Salehi-Reyhani A, et al., 2018, Sculpting and fusing biomimetic vesicle networks using optical tweezers, Nature Communications, Vol:9, ISSN:2041-1723

Slatter DA, Percy CL, Allen-Redpath K, et al., 2018, Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies, Jci Insight, Vol:3, ISSN:2379-3708

Karamdad K, Hindley JW, Bolognesi G, et al., 2018, Engineering thermoresponsive phase separated vesicles formed: Via emulsion phase transfer as a content-release platform, Chemical Science, Vol:9, ISSN:2041-6520, Pages:4851-4858

Cornell CE, McCarthy NLC, Levental KR, et al., 2017, n-Alcohol Length Governs Shift in L-o-L-d Mixing Temperatures in Synthetic and Cell-Derived Membranes, Biophysical Journal, Vol:113, ISSN:0006-3495, Pages:1200-1211

More Publications