Imperial College London

ProfessorNigelSmith

Faculty of Natural SciencesDepartment of Physics

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 7527n.j.t.smith CV

 
 
//

Location

 

1106Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Reichhart:2012:10.1103/PhysRevC.85.065801,
author = {Reichhart, L and Akimov, DY and Araujo, HM and Barnes, EJ and Belov, VA and Burenkov, AA and Chepel, V and Currie, A and DeViveiros, L and Edwards, B and Francis, V and Ghag, C and Hollingsworth, A and Horn, M and Kalmus, GE and Kobyakin, AS and Kovalenko, AG and Lebedenko, VN and Lindote, A and Lopes, MI and Luescher, R and Majewski, P and Murphy, ASJ and Neves, F and Paling, SM and Pinto, da Cunha J and Preece, R and Quenby, JJ and Scovell, PR and Silva, C and Solovov, VN and Smith, NJT and Smith, PF and Stekhanov, VN and Sumner, TJ and Thorne, C and Walker, RJ},
doi = {10.1103/PhysRevC.85.065801},
journal = {Physical Review C},
title = {Quenching factor for low-energy nuclear recoils in a plastic scintillator},
url = {http://dx.doi.org/10.1103/PhysRevC.85.065801},
volume = {85},
year = {2012}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.014±0.002) g MeV−1 cm−2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.
AU - Reichhart,L
AU - Akimov,DY
AU - Araujo,HM
AU - Barnes,EJ
AU - Belov,VA
AU - Burenkov,AA
AU - Chepel,V
AU - Currie,A
AU - DeViveiros,L
AU - Edwards,B
AU - Francis,V
AU - Ghag,C
AU - Hollingsworth,A
AU - Horn,M
AU - Kalmus,GE
AU - Kobyakin,AS
AU - Kovalenko,AG
AU - Lebedenko,VN
AU - Lindote,A
AU - Lopes,MI
AU - Luescher,R
AU - Majewski,P
AU - Murphy,ASJ
AU - Neves,F
AU - Paling,SM
AU - Pinto,da Cunha J
AU - Preece,R
AU - Quenby,JJ
AU - Scovell,PR
AU - Silva,C
AU - Solovov,VN
AU - Smith,NJT
AU - Smith,PF
AU - Stekhanov,VN
AU - Sumner,TJ
AU - Thorne,C
AU - Walker,RJ
DO - 10.1103/PhysRevC.85.065801
PY - 2012///
SN - 1089-490X
TI - Quenching factor for low-energy nuclear recoils in a plastic scintillator
T2 - Physical Review C
UR - http://dx.doi.org/10.1103/PhysRevC.85.065801
UR - http://hdl.handle.net/10044/1/33471
VL - 85
ER -