Imperial College London

Professor Nilay Shah OBE FREng

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Process Systems Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6621n.shah

 
 
//

Assistant

 

Miss Jessica Baldock +44 (0)20 7594 5699

 
//

Location

 

ACEX 522ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

677 results found

Acha Izquierdo S, Lambert R, Le Brun N, Markides C, Shah Net al., 2018, Optimal CHP investments applying sensitivity analyses and financial risk management indicators, 2018 ASHRAE Annual Conference, Publisher: ASHRAE

Evaluating combined heat and power (CHP) investments for commercial applications is not a straightforward task.This work assesses the impact multipletechno-economicuncertainties can have on CHP investments.Understanding the impact these uncertaintiescanhave on projectviabilityallows decision-makers to make informed decisions on capital intensive projects. In this work,amathematical model described previously (Cedillos et al.)wasused to select the optimal CHP size and calculate a reference solution on the financial viability of such investments in a set of buildings. After generating these reference CHP solutions, the impact of uncertainty is then assessed by applying Monte-Carlo based sensitivity analyses and financial and risk management key performance indicators (KPIs). Results suggest thefour most influential parameters in CHP priojects areheating demand, installation costs, electricity prices, and electricity demand. For attractive investments cost uncertainty made projects vary in their payback from2.6 to 6.9years, while for unattractive investments payback ranged from 4 to 11.3 years. Furthermore, Monte-Carlo results illustrate thedifferent distributions of each project, with significant variations in tails risks; indicating which sites are more suitable than others. Results presented show the economic impactuncertainties have onCHP projects, hence allowing decision-makers to make informed decisions before committing their resources to such capital-intensive projects.

Conference paper

Acha Izquierdo S, Shah N, Markides C, Le Brun N, Lambert Ret al., 2018, Fuel cells as CHP systems in commercial buildings: a case study for the food retail sector, 2018 ASHRAE Annual Conference, Publisher: ASHRAE

This study investigates fuel cells as combined heat and power systems (CHPs) for distributed applications in commercial buildings, specifically supermarkets. Up-to-date technical data from a specialized manufacturing company wasinvestigated and used to conduct a case study analysis on several food retail buildings using half-hourly historical data. A detail mathematical model, described in previous publications (Cedillos et al. 2016, Achaet al.2018), was used to simulate the performance of fuel cells through a year of operation in each supermarket. The simulations employ comprehensive energy market costing data and practical informationto evaluate project feasibility such as installation workcosts. The results of the simulations are discussed and a techno-economic assessment is conducted to evaluate the main factors affecting the economics of fuel cell projects.In addition, a comparative analysis with competing CHP technologies (internal combustion engines) is covered. Results show that fuel cells are becoming financially competitivealthough combustion engines are still amoreviableoption. For large-size supermarketsthe payback time forinstalling a fuel cell system is 4.7-5.6years versus 3.6-5.6years for internal combustion engines. The work alsodiscusses the prospects of fuel cells under different market and policy scenariosas well astechnologicalimprovements; thus,offering insights in what are the key aspects which can foster fuel cell installations

Conference paper

Jing R, Zhu X, Zhu Z, Wang W, Meng C, Shah N, Li N, Zhao Yet al., 2018, A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning, Energy Conversion and Management, Vol: 166, Pages: 445-462, ISSN: 0196-8904

This study proposes an integrated framework for planning distributed energy system with addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. The framework can be decomposed into two stages. At the optimization stage, the system design and dispatch are optimized considering multiple objectives by Ɛ-constraint method. Three decision making approaches are applied to identify the Pareto optimal solution. At the evaluation stage, a combined Analytic Hierarchy Process and Gray Relation Analysis method is proposed to evaluate and rank various optimal solutions when different objectives and cases are considered. Two stages of work are integrated by introducing the baseline conditions. As an illustrative example, an optimal planning model for a solar-assisted Solid Oxide Fuel Cell distributed energy system is proposed by Mixed Integer Non-linear Programming approach firstly. Then, the system is applied to different cases considering two types of buildings located in three climate zones. The obtained optimal solutions are further evaluated by the proposed multi-criteria evaluation method. Therefore, the overall optimal system design and dispatch strategy, as well as the best demonstration site can be identified comprehensively considering multiple objectives. In general, the results have verified the effectiveness of the proposed framework.

Journal article

Heuberger CF, Rubin ES, Staffell L, Shah N, Mac Dowell Net al., 2018, Power capacity expansion planning considering endogenous technology cost learning (vol 204, pg 831, 2017), APPLIED ENERGY, Vol: 220, Pages: 974-974, ISSN: 0306-2619

Journal article

Heuberger CF, Staffell I, Shah N, Mac Dowell Net al., 2018, Impact of myopic decision-making and disruptive events in power systems planning, Nature Energy, Vol: 3, Pages: 634-640, ISSN: 1520-8524

The delayed deployment of low-carbon energy technologies is impeding energy system decarbonization. The continuing debate about the cost-competitiveness of low-carbon technologies has led to a strategy of waiting for a ‘unicorn technology’ to appear. Here, we show that myopic strategies that rely on the eventual manifestation of a unicorn technology result in either an oversized and underutilized power system when decarbonization objectives are achieved, or one that is far from being decarbonized, even if the unicorn technology becomes available. Under perfect foresight, disruptive technology innovation can reduce total system cost by 13%. However, a strategy of waiting for a unicorn technology that never appears could result in 61% higher cumulative total system cost by mid-century compared to deploying currently available low-carbon technologies early on.

Journal article

Ballantyne AD, Hallett JP, Riley DJ, Shah N, Payne DJet al., 2018, Lead acid battery recycling for the twenty-first century, Royal Society Open Science, Vol: 5, Pages: 171368-171368, ISSN: 2054-5703

There is a growing need to develop novel processes to recover lead from end-of-life lead-acid batteries, due to increasing energy costs of pyrometallurgical lead recovery, the resulting CO2 emissions and the catastrophic health implications of lead exposure from lead-to-air emissions. To address these issues, we are developing an iono-metallurgical process, aiming to displace the pyrometallurgical process that has dominated lead production for millennia. The proposed process involves the dissolution of Pb salts into the deep eutectic solvent (DES) Ethaline 200, a liquid formed when a 1 : 2 molar ratio of choline chloride and ethylene glycol are mixed together. Once dissolved, the Pb can be recovered through electrodeposition and the liquid can then be recycled for further Pb recycling. Firstly, DESs are being used to dissolve the lead compounds (PbCO3, PbO, PbO2 and PbSO4) involved and their solubilities measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The resulting Pb2+ species are then reduced and electrodeposited as elemental lead at the cathode of an electrochemical cell; cyclic voltammetry and chronoamperometry are being used to determine the electrodeposition behaviour and mechanism. The electrodeposited films were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). We discuss the implications and opportunities of such processes.

Journal article

Bieber N, Kee JH, Wang X, Triantafyllidis C, van Dam KH, Koppelaar RHEM, Shah Net al., 2018, Erratum to "Sustainable planning of the energy-water-food nexus using decision making tools" [Energy Policy 113, (2018) 584, 2018], Energy Policy, Vol: 116, Pages: 289-289, ISSN: 0301-4215

Journal article

Quek V, Shah N, Chachuat B, 2018, Modeling for design and operation of high-pressure membrane contactors in natural gas sweetening, Chemical Engineering Research and Design, Vol: 132, Pages: 1005-1019, ISSN: 1744-3598

Over the past decade, membrane contactors (MBC) for CO2 absorption have been widely recognized for their large intensification potential compared to conventional absorption towers. MBC technology uses microporous hollow-fiber membranes to enable effective gas and liquid mass transfer, without the two phases dispersing into each other. The main contribution of this paper is the development and verification of a predictive mathematical model of high-pressure MBC for natural gas sweetening applications, based on which model-based parametric analysis and optimization can be conducted. The model builds upon insight from previous modeling studies by combining 1-d and 2-d mass-balance equations to predict the CO2 absorption flux, whereby the degree of membrane wetting itself is calculated from the knowledge of the membrane pore-size distribution. The predictive capability of the model is tested for both lab-scale and pilot-scale MBC modules, showing a close agreement of the predictions with measured CO2 absorption fluxes at various gas and liquid flowrates, subject to a temperature correction to account for the heat of reaction in the liquid phase. The results of a model-based analysis confirm the advantages of pressurized MBC operation in terms of CO2 removal efficiency. Finally, a comparison between vertical and horizontal modes of operation shows that the CO2 removal efficiency in the latter can be vastly superior as it is not subject to the liquid static head and remediation strategies are discussed.

Journal article

Zhang D, del Rio-Chanona EA, Wagner JL, Shah Net al., 2018, Life cycle assessments of bio-based sustainable polylimonene carbonate production processes, Sustainable Production and Consumption, Vol: 14, Pages: 152-160, ISSN: 2352-5509

Biomass is a promising feedstock for the production of sustainable biopolymers, which could offer a significant reduction of the adverse environmental impacts associated with conventional petroleum-based polymers. To further evaluate their potential, this study investigated the environmental impacts associated with the production of the newly proposed biopolymer polylimonene carbonate. Different feedstocks (citrus waste and microalgae) were selected and a conceptual process design from limonene oxidation to polymer synthesis was completed. Using life cycle assessment, the potential for energy integration and the contributions of individual process sections on the overall process environmental impacts were thoroughly analysed. The results showed, that sustainable polylimonene carbonate synthesis was limited by the use of tert-butyl hydroperoxide as the limonene oxidation agent and consequently, a more environmentally-friendly and energy-efficient limonene oxidation method should be developed. Based on the economic analysis, the polymer cost was estimated to range from $1.36 to $1.51 kg −1 , comparable to the costs of petrol-based polystyrene ($1.2 to $1.6 kg −1 ). Moreover, this study found that both feedstock selection and the biowaste treatment method have significant effects on the process environmental impacts, and a carbon negative process was achieved when applying the waste biomass for electricity generation. Therefore, it was concluded that future process designs should combine polymer production with the co-generation of energy from waste biomass.

Journal article

Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac Dowell Net al., 2018, Carbon capture and storage (CCS): the way forward, Energy and Environmental Science, Vol: 11, Pages: 1062-1176, ISSN: 1754-5692

Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

Journal article

Wang X, Guo M, Koppelaar RHEM, Van Dam K, Triantafyllidis C, Shah Net al., 2018, A nexus approach for sustainable urban energy-water-waste systems planning and operation, Environmental Science and Technology, Vol: 52, Pages: 3257-3266, ISSN: 0013-936X

Energy, water and waste systems analyzed at a nexus level is key to move towards more sustainable cities. In this paper, the “resilience.io” platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW) and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in Sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, natural constrained, policy interventions and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

Journal article

del Rio-Chanona EA, Liu J, Wagner JL, Zhang D, Meng Y, Xue S, Shah Net al., 2018, Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production, Biotechnology and Bioengineering, Vol: 115, Pages: 359-370, ISSN: 1097-0290

Biodiesel produced from microalgae has been extensively studied due to its potentially outstanding advantages over traditional transportation fuels. In order to facilitate its industrialization and improve the process profitability, it is vital to construct highly accurate models capable of predicting the complex behavior of the investigated biosystem for process optimization and control, which forms the current research goal. Three original contributions are described in this paper. Firstly, a dynamic model is constructed to simulate the complicated effect of light intensity, nutrient supply and light attenuation on both biomass growth and biolipid production. Secondly, chlorophyll fluorescence, an instantly measurable variable and indicator of photosynthetic activity, is embedded into the model to monitor and update model accuracy especially for the purpose of future process optimal control, and its correlation between intracellular nitrogen content is quantified, which to the best of our knowledge has never been addressed so far. Thirdly, a thorough experimental verification is conducted under different scenarios including both continuous illumination and light/dark cycle conditions to testify the model predictive capability particularly for long-term operation, and it is concluded that the current model is characterized by a high level of predictive capability. Based on the model, the optimal light intensity for algal biomass growth and lipid synthesis is estimated. This work, therefore, paves the way to forward future process design and real-time optimization.

Journal article

Triantafyllidis CP, Koppelaar RHEM, Wang X, van Dam KH, Shah Net al., 2018, An integrated optimisation platform for sustainable resource and infrastructure planning, Environmental Modelling and Software, Vol: 101, Pages: 146-168, ISSN: 1364-8152

It is crucial for sustainable planning to consider broad environmental and social dimensions and systemic implications of new infrastructure to build more resilient societies, reduce poverty, improve human well-being, mitigate climate change and address other global change processes. This article presents resilience.io, 2 a platform to evaluate new infrastructure projects by assessing their design and effectiveness in meeting growing resource demands, simulated using Agent-Based Modelling due to socio-economic population changes. We then use Mixed-Integer Linear Programming to optimise a multi-objective function to find cost-optimal solutions, inclusive of environmental metrics such as greenhouse gas emissions. The solutions in space and time provide planning guidance for conventional and novel technology selection, changes in network topology, system costs, and can incorporate any material, waste, energy, labour or emissions flow. As an application, a use case is provided for the Water, Sanitation and Hygiene (WASH) sector for a four million people city-region in Ghana.

Journal article

Zhang D, del Rio-Chanona EA, Shah N, 2018, Life cycle assessment of bio-based sustainable polylimonene carbonate production processes, Computer Aided Chemical Engineering, Pages: 1693-1698

Biomass derived polymers are considered as promising candidates to replace petroleum based polymers due to their potential environmental friendliness. To facilitate their application, in this study, a newly proposed biopolymer, polylimonene carbonate, was chosen as the representative to investigate the environmental impacts of the biopolymer production process. Different feedstocks (citrus waste and microalgae) were selected and a comprehensive process design from limonene oxidation to polymer synthesis was completed. Through life cycle assessment, effects of biomass treatment methods, energy integration, and use of solvents on the process environmental impacts were thoroughly discussed. It was found that for sustainable polylimonene carbonate synthesis, a more environmentally-friendly and energy-efficient limonene oxidation method should be developed. Based on the economic analysis, the polymer's cost was estimated to be around 1.36 to 1.51 $/kg, indicating its great potential as a substitute for petrol-based polystyrene. Moreover, this study found that both feedstock selection and biowaste treatment method significantly affect the process environmental impacts, and a carbon negative biopolymer can be achieved when the remaining waste is used for energy generation. Therefore, a new concept that considers CO2 as an efficient solar energy carrier for future sustainable process design is proposed in this study.

Book chapter

Chimento J, Gonzato S, O’Dwyer E, Turu GB, Acha S, Shah Net al., 2018, District-level coordination of predictive control strategies for urban residential heating networks

Urban energy systems represent a significant proportion of global energy consumption, with residential and commercial buildings accounting for around 40%. This could be significantly reduced through the use of smarter control strategies for space heating. In district heating networks, the supply limitations associated with the electrical grid can lead to a misalignment between the locally optimal objectives of the individual dwellings and the globally optimal objective of the district. In this paper, a methodology is developed for coordinating a decentralised set of building heating subsystems within a district heating network by deriving a dynamic electricity price signal and communicating it to the network in order to satisfy a power supply limit. The price signal is transmitted by a high-level coordinator which discourages power usage when necessary. It was found that power supply limits could be satisfied in this way but only above a threshold value of 180 kW for the particular district, while lower values on the limit led to instability in the form of power shortages and occupant discomfort.

Conference paper

Wang X, Kong Q, Papathanasiou MM, Shah Net al., 2018, Precision healthcare supply chain design through multi-objective stochastic programming, Computer Aided Chemical Engineering, Pages: 2137-2142

Following the FDA's historic approval of the first cell-based, autologous, cancer therapy in 2017, there has been an increasing growth in the personalized cell therapy market. Both the personalized character as well as the sensitive nature of these therapies, has increased the complexity of their supply chain design and optimisation. In this work, we have addressed key issues in the cyclic supply chain for simultaneous design of the supply chain and the manufacturing plan. A comprehensive optimisation based methodology through both deterministic and stochastic programming is presented and applied to study the Chimeric Antigen Receptor (CAR) T cell therapies. Multiple objectives including maximisation of the overall net present value (NPV) and minimisation of the average response time of all patients are evaluated, while accounting the uncertainties in patients’ demand distribution. Results indicate that the total benefits from the optimized supply chain management are significant compared with the current global market.

Book chapter

O'Dwyer E, Wang H, Wang A-J, Shah N, Guo Met al., 2018, Optimisation of Wastewater Treatment and Recovery Solutions in Industrial Parks, Editors: Friedl, Klemes, Radl, Varbanov, Wallek, Publisher: ELSEVIER SCIENCE BV, Pages: 1407-1412

Book chapter

Govindan R, Al-Ansari T, Korre A, Shah Net al., 2018, Assessment of technology portfolios with enhanced economic and environmental performance for the energy, water and food nexus, Editors: Friedl, Klemes, Radl, Varbanov, Wallek, Publisher: ELSEVIER SCIENCE BV, Pages: 537-542

Book chapter

Al-Ansari T, Govindan R, Korre A, Nie Z, Shah Net al., 2018, An energy, water and food nexus approach aiming to enhance food production systems through CO<sub>2</sub> fertilization, Editors: Friedl, Klemes, Radl, Varbanov, Wallek, Publisher: ELSEVIER SCIENCE BV, Pages: 1487-1492

Book chapter

Bieber N, Ker JH, Wang X, Triantafyllidis C, van Dam KH, Koppelaar RHEM, Shah Net al., 2017, Sustainable planning of the energy-water-food nexus using decision making tools, Energy Policy, Vol: 113, Pages: 584-607, ISSN: 0301-4215

Developing countries struggle to implement suitable electric power and water services, failing to match infrastructure with urban expansion. Integrated modelling of urban water and power systems would facilitate the investment and planning processes, but there is a crucial gap to be filled with regards to extending models to incorporate the food supply in developing contexts. In this paper, a holistic methodology and platform to support the resilient and sustainable planning at city region level for multiple sectors was developed for applications in urban energy systems (UES) and the energy-water-food nexus, combining agent-based modelling - to simulate and forecast resource demands on spatial and temporal scales - with resource network optimization, which incorporates capital expenditures, operational costs, environmental impacts and the opportunity cost of food production foregone (OPF). Via a scenario based approach, innovative water supply and energy deployment policies are presented, which address the provision of clean energy for every citizen and demonstrate the potential effects of climate change. The results highlighted the vulnerability of Ghanas power generation infrastructure and the need for diversification. Feed-in tariffs and investment into supporting infrastructure and agriculture intensification will effectively increase the share of renewable energy and reduce carbon emissions.

Journal article

Heuberger C, Staffell I, Shah N, Mac Dowell Net al., 2017, A systems approach to quantifying the value of power generation and energy storage technologies in future electricity networks, Computers and Chemical Engineering, Vol: 107, Pages: 247-256, ISSN: 0098-1354

A new approach is required to determine a technology's value to the power systems of the 21st century. Conventional cost-based metrics are incapable of accounting for the indirect system costs associated with intermittent electricity generation, in addition to environmental and security constraints. In this work, we formalise a new concept for power generation and storage technology valuation which explicitly accounts for system conditions, integration challenges, and the level of technology penetration. The centrepiece of the system value (SV) concept is a whole electricity systems model on a national scale, which simultaneously determines the ideal power system design and unit-wise operational strategy. It brings typical Process Systems Engineering thinking into the analysis of power systems. The model formulation is a mixed-integer linear optimisation and can be understood as hybrid between a generation expansion and a unit commitment model. We present an analysis of the future UK electricity system and investigate the SV of carbon capture and storage equipped power plants (CCS), onshore wind power plants, and grid-level energy storage capacity. We show how the availability of different low-carbon technologies impact the optimal capacity mix and generation patterns. We find that the SV in the year 2035 of grid-level energy storage is an order of magnitude greater than that of CCS and wind power plants. However, CCS and wind capacity provide a more consistent value to the system as their level of deployment increases. Ultimately, the incremental system value of a power technology is a function of the prevalent system design and constraints.

Journal article

Khor CS, Elkamel A, Shah N, 2017, Optimization methods for petroleum fields development and production systems: a review, OPTIMIZATION AND ENGINEERING, Vol: 18, Pages: 907-941, ISSN: 1389-4420

Journal article

Borello D, Pantaleo AM, Caucci M, De Caprariis B, De Filippis P, Shah Net al., 2017, Modeling and experimental study of a small scale olive pomace gasifier for cogeneration: energy and profitability analysis, Energies, Vol: 10, ISSN: 1996-1073

A thermodynamic model of a combined heat and power (CHP) plant, fed by syngas produced by dry olive pomace gasification is here presented. An experimental study is carried out to inform the proposed model. The plant is designed to produce electric power (200 kWel) and hot-water by using a cogenerative micro gas turbine (micro GT). Before being released, exhausts are used to dry the biomass from 50% to 17% wb. The ChemCad software is used to model the gasification process, and input data to inform the model are taken from experimental tests. The micro GT and cogeneration sections are modeled assuming data from existing commercial plants. The paper analyzes the whole conversion process from wet biomass to heat and power production, reporting energy balances and costs analysis. The investment profitability is assessed in light of the Italian regulations, which include feed-in-tariffs for biomass based electricity generation.

Journal article

Wang X, Guo M, Van Dam KH, Koppelaar R, Triantafyllidis C, Shah Net al., 2017, Waste-Energy-Water systems in sustainable city development using the resilience.io platform, 27th European Symposium on Computer Aided Process Engineering

Conference paper

Crémel S, Guo M, Bustos-Turu G, van Dam, Shahet al., 2017, Optimal design of urban energy systems with demand side management and distributed generation, 27th European Symposium on Computer Aided Process Engineering, Publisher: Elsevier, Pages: 2371-2376, ISSN: 1570-7946

To tackle prominent societal challenges such as increasing energy demands and climate change due to greenhouse gas (GHGs) emissions demand side management (DSM) and distributed generation (DG) have been proposed as effective solutions particularly for urban areas with high energy densities and diverse types of energy demands. However, urban energy systems are complex, involving supply-demand interconnections, interaction of whole system level with various stakeholders (e.g. end-users, centralised suppliers) and regulation effects of policy instruments. The potential roles of integrated DSM and DG for the climate change mitigation under the urban energy system context haven been yet well understood. Our research aims to advance the understanding of such promising urban energy solutions and generate new insights via modelling framework development. In this study, an optimisation model is developed to simulate the combined effects of DSM and DG strategies in the optimal design of urban energy systems, and investigate the trade-offs between environmental and economic targets. The results of our case study on a hypothetical urban area suggest that the effects of just DSM on climate change mitigation are relatively low whereas urban system would benefit significantly from the introduction of more carbon efficient and economically competitive DG technologies. The set of Pareto optimal solutions derived from the model provide insights into the trade-offs between conflicting GHG and economic objectives: the environmentally optimal solutions with up to 39-43% of the GHG reduction are derived at the expenses of a cost increase by 73-87%; relatively cost efficient systems with marginal increase in economic profiles (4-5%) but significant GHG reductions (32-33%) are achievable. This study demonstrates the insights such model could provide for the decision-making and paradigm shifts towards sustainable urban energy systems and smart operational strategies.

Conference paper

Klymenko OV, Kucherenko S, Shah N, 2017, Constrained Global Sensitivity Analysis: Sobol' indices for problems in non-rectangular domains, 27th European Symposium on Computer-Aided Process Engineering (ESCAPE), Publisher: ELSEVIER SCIENCE BV, Pages: 151-156, ISSN: 1570-7946

Conference paper

Panteli A, Giarola S, Shah N, 2017, Biobased Supply Chain Optimisation Model under Uncertainties, 27th European Symposium on Computer-Aided Process Engineering (ESCAPE), Publisher: ELSEVIER SCIENCE BV, Pages: 961-966, ISSN: 1570-7946

Conference paper

Acha S, Mariaud A, Shah N, Markides CNet al., 2017, Optimal design and operation of low-carbon energy technologies in commercial buildings, 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems - ECOS 2017

© 2017 IMEKO Non-domestic buildings are large energy consumers and present many opportunities with which to enhance the way they produce and consume electricity, heating and cooling. If energy system integration is feasible, this can lead to significant reductions in energy use and emissions associated with building operations. Due to their diverse energy requirements, a broad range of technologies in flexible solutions need to be evaluated to identify the best alternative. This paper presents an integrated energy-systems model that optimizes the selection and operation of distributed technologies for commercial buildings. The framework consists of a comprehensive technology database, half-hourly electricity cost profiles, conventional fuel costs and building features. This data is applied to a mixed-integer linear programming model that optimizes the design and operation of installed technologies based on a range of financial and environmental criteria. The model aims to guide decision makers in making attractive investments that are technically feasible and environmentally sound. A case study of a food distribution centre in the UK is presented to illustrate the economic and environmental benefits the proposed integrated energy systems model could bring against a business as usual (BaU) approach. The technology portfolio considered in the case study includes combined heat and power (CHP) and organic Rankine cycle (ORC) engines, absorption chillers, photovoltaic (PV) panels, and battery systems. The results clearly illustrate the different outcomes and trade-offs that can emerge when stakeholders champion different technologies instead of making an exhaustive assessment. Overall, the model provides meaningful insights that can allow stakeholders to make well informed investment decisions when it comes to the optimal configuration and operation of energy technologies in commercial buildings.

Conference paper

Acha Izquierdo S, Mariaud A, Shah N, Markides Cet al., 2017, Optimal Design and Operation of Distributed Low-Carbon Energy Technologies in Commercial Buildings, Energy, Vol: 142, Pages: 578-591, ISSN: 0360-5442

Commercial buildings are large energy consumers and opportunities exist to improve the way they produce and consume electricity, heating and cooling. If energy system integration is feasible, this can lead to significant reductions in energy consumption and emissions. In this context, this work expands on an existing integrated Technology Selection and Operation (TSO) optimisation model for distributed energy systems (DES). The model considers combined heat and power (CHP) and organic Rankine cycle (ORC) engines, absorption chillers, photovoltaic panels and batteries with the aim of guiding decision makers in making attractive investments that are technically feasible and environmentally sound. A retrofit case study of a UK food distribution centre is presented to showcase the benefits and trade-offs that integrated energy systems present by contrasting outcomes when different technologies are considered. Results show that the preferred investment options select a CHP coupled either to an ORC unit or to an absorption chiller. These solutions provide appealing internal rates of return of 28–30% with paybacks within 3.5–3.7 years, while also decarbonising the building by 95–96% (if green gas is used to power the site). Overall, the TSO model provides valuable insights allowing stakeholders to make well-informed decisions when evaluating complex integrated energy systems.

Journal article

Kong Q, Shah N, 2017, An Optimisation-based Framework for Simultaneous Process Synthesis and Heat Integration, 27th European Symposium on Computer-Aided Process Engineering (ESCAPE), Publisher: ELSEVIER SCIENCE BV, Pages: 619-624, ISSN: 1570-7946

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00005330&person=true&page=8&respub-action=search.html