Imperial College London

DrOliverRatmann

Faculty of Natural SciencesDepartment of Mathematics

Reader in Statistics and Machine Learning for Public Good
 
 
 
//

Contact

 

oliver.ratmann05 Website

 
 
//

Location

 

525Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

93 results found

Cabras S, Castellanos ME, Ratmann O, 2021, Goodness of fit for models with intractable likelihood, Test, Vol: 30, Pages: 713-736, ISSN: 1133-0686

Routine goodness-of-fit analyses of complex models with intractable likelihoods arehampered by a lack of computationally tractable diagnostic measures with wellunderstood frequency properties, that is, with a known sampling distribution. Thisfrustrates the ability to assess the extremity of the data relative to fitted simulationmodels in terms of pre-specified test statistics, an essential requirement for modelimprovement. Given an Approximate Bayesian Computation setting for a positedmodel with an intractable likelihood for which it is possible to simulate from them, wepresent a general and computationally inexpensive Monte Carlo framework for obtaining p-valuesthat are asymptotically uniformly distributed in [0, 1] under the positedmodel when assumptions about the asymptotic equivalence between the conditionalstatistic and the maximum likelihood estimator hold. The proposed framework followsalmost directly from the conditional predictive p-value proposed in the Bayesian literature. Numerical investigations demonstrate favorable power properties in detectingactual model discrepancies relative to other diagnostic approaches. We illustrate thetechnique on analytically tractable examples and on a complex tuberculosis transmission model.

Journal article

Ratmann O, Bhatt S, Flaxman S, 2021, Implications of a highly transmissible variant of SARS-CoV-2 for children, Archives of Disease in Childhood, Vol: 106, Pages: 1-1, ISSN: 0003-9888

Journal article

Mishra S, Scott JA, Laydon DJ, Flaxman S, Gandy A, Mellan TA, Unwin HJT, Vollmer M, Coupland H, Ratmann O, Monod M, Zhu HH, Cori A, Gaythorpe KAM, Whittles LK, Whittaker C, Donnelly CA, Ferguson NM, Bhatt Set al., 2021, Comparing the responses of the UK, Sweden and Denmark to COVID-19 using counterfactual modelling, SCIENTIFIC REPORTS, Vol: 11, Pages: 1-9, ISSN: 2045-2322

The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others’ policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country’s first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic.

Journal article

Hillis S, Unwin H, Chen Y, Cluver L, Sherr L, Goldman P, Ratmann O, Donnelly C, Bhatt S, Villaveces A, Butchart A, Bachman G, Rawlings L, Green P, Nelson C, Flaxman Set al., 2021, Global minimum estimates of children affected by COVID-19-associated orphanhood and deaths of caregivers: a modelling study, The Lancet, Vol: 398, Pages: 391-402, ISSN: 0140-6736

Background: The COVID-19 pandemic response has focused on prevention, detection, and response. Beyond morbidity and mortality, pandemics carry secondary impacts, such as children orphaned or bereft of their caregivers. Such children often face adverse consequences, including poverty, abuse, and institutionalization. We provide estimates for the magnitude of this problem resulting from COVID-19 and describe the need for resource allocation.Methods: We use mortality and fertility data to model minimum estimates and rates of COVID-19-associated orphanhood (death of 1 or both parents) and deaths of custodial and co-residing grandparents for 21 countries. We use these estimates to model global extrapolations for the number of children experiencing COVID-19-associated deaths of parents and grandparents ages 60-84.Results: Globally, from March 1, 2020-March 31, 2021, we estimate 974,000 children experienced death of primary caregivers, including parents or custodial grandparents; >1.3 million experienced death of primary caregivers and co-residing grandparents (or kin). Countries with rates of primary caregiver deaths >1/1000 children included Peru, South Africa, Mexico, Colombia, Brazil, I.R. Iran, U.S.A., and Russia (range, 1.0-8.5/1000). Numbers of children orphaned exceeded numbers of deaths among those aged 15 – 44; 2 – 5 times more children had deceased fathers than deceased mothers. Conclusions: Orphanhood and caregiver deaths are a hidden pandemic resulting from COVID-19-associated deaths. Accelerating equitable vaccine delivery is key to prevention. Psychosocial and economic support can help families nurture children bereft of caregivers and help ensure institutionalization is avoided. These data demonstrate the need for an additional pillar of our response: prevent, detect, respond, and care for children.

Journal article

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan TA, Wilton T, Klapsa D, Mate R, Fritzsche M, Zambon M, Ahuja J, Howes A, Miscouridou X, Nason GP, Ratmann O, Semenova E, Leech G, Sandkuehler JF, Rogers-Smith C, Vollmer M, Unwin HJT, Gal Y, Chand M, Gandy A, Martin J, Volz E, Ferguson NM, Bhatt S, Brauner JM, Flaxman Set al., 2021, Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England, EClinicalMedicine, Vol: 39, Pages: 1-8, ISSN: 2589-5370

BackgroundSince its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital.MethodsWe examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021.FindingsAcross data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May.InterpretationThe outcome of competition between variants depends on a wide range of factors such as intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by importations and some community transmission. There was competition between non-B.1.17 variants which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our results underscore that early detection of new variants requires a diverse array of data sources in community surveillance. Continued real-time information on the highly dynamic composition and trajectory of different SARS-CoV-2 lineages is essential to future control effortsFundingNational Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy

Journal article

Meyerowitz-Katz G, Bhatt S, Ratmann O, Brauner JM, Flaxman S, Mishra S, Sharma M, Mindermann S, Bradley V, Vollmer M, Merone L, Yamey Get al., 2021, Is the cure really worse than the disease? The health impacts of lockdowns during COVID-19, BMJ Global Health, Vol: 6, Pages: 1-6, ISSN: 2059-7908

Journal article

Bogers SJ, Schim van der Loeff MF, Davidovich U, Boyd A, van der Valk M, Brinkman K, de Bree GJ, Reiss P, van Bergen JEAM, Geerlings SE, HIV Transmission Elimination AMsterdam H-TEAM Consortiumet al., 2021, Promoting HIV indicator condition-guided testing in hospital settings (PROTEST 2.0): study protocol for a multicentre interventional study, BMC Infectious Diseases, Vol: 21, ISSN: 1471-2334

BACKGROUND: Late presentation remains a key barrier towards controlling the HIV epidemic. Indicator conditions (ICs) are those that are AIDS-defining, associated with a prevalence of undiagnosed HIV > 0.1%, or whose clinical management would be impeded if an HIV infection were undiagnosed. IC-guided HIV testing is an effective strategy in identifying undiagnosed HIV, but opportunities for earlier HIV diagnosis through IC-guided testing are being missed. We present a protocol for an interventional study to improve awareness of IC-guided testing and increase HIV testing in patients presenting with ICs in a hospital setting. METHODS: We designed a multicentre interventional study to be implemented at five hospitals in the region of Amsterdam, the Netherlands. Seven ICs were selected for which HIV test ratios (proportion of patients with an IC tested for HIV) will be measured: tuberculosis, cervical/vulvar cancer or high-grade cervical/vulvar dysplasia, malignant lymphoma, hepatitis B and C, and peripheral neuropathy. Prior to the intervention, a baseline assessment of HIV test ratios across ICs will be performed in eligible patients (IC diagnosed January 2015 through May 2020, ≥18 years, not known HIV positive) and an assessment of barriers and facilitators for HIV testing amongst relevant specialties will be conducted using qualitative (interviews) and quantitative methods (questionnaires). The intervention phase will consist of an educational intervention, including presentation of baseline results as competitive graphical audit and feedback combined with discussion on implementation and opportunities for improvement. The effect of the intervention will be assessed by comparing HIV test ratios of the pre-intervention and post-intervention periods. The primary endpoint is the HIV test ratio within ±3 months of IC diagnosis. Secondary endpoints are the HIV test ratio within ±6 months of diagnosis, ratio ever tested f

Journal article

Dijkstra M, van Rooijen MS, Hillebregt MM, van Sighem A, Smit C, Hogewoning A, Davidovich U, Heijman T, Hoornenborg E, Reiss P, van der Valk M, Prins M, Prins JM, van der Loeff MFS, de Bree GJet al., 2021, Decreased Time to Viral Suppression After Implementation of Targeted Testing and Immediate Initiation of Treatment of Acute Human Immunodeficiency Virus Infection Among Men Who Have Sex With Men in Amsterdam, CLINICAL INFECTIOUS DISEASES, Vol: 72, Pages: 1952-1960, ISSN: 1058-4838

Journal article

Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FC, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MU, Gaburo N, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FS, de Lima AB, Silva JDP, Zauli DAG, Ferreira ACDS, Schnekenberg RP, Laydon DJ, Walker PGT, Schlueter HM, dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, dos Santos HM, Aguiar RS, Proenca-Modena JLP, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Prete CA, Nascimento VH, Suchard MA, Bowden TA, Pond SLK, Wu C-H, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino ECet al., 2021, Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, Vol: 372, Pages: 815-821, ISSN: 0036-8075

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

Journal article

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan T, Wilton T, Klapsa D, Mate R, Fritzsche M, Zambon M, Ahuja J, Howes A, Miscouridou X, Nason G, Ratmann O, Leech G, Fabienne Sandkühler J, Rogers-Smith C, Vollmer M, Unwin H, Gal Y, Chand M, Gandy A, Martin J, Volz E, Ferguson N, Bhatt S, Brauner J, Flaxman Set al., 2021, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Publisher: Imperial College London, 44

Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when, whether, and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. This is particularly true for England, which has high coverage from vaccines that are likely more protective against B.1.1.7 than some other VOCs. We examine trends in B.1.1.7’s prevalence in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. Our results suggest shifts in the composition of SARS-CoV-2 lineages driving transmission in England between March and April 2021. Local transmission of non-B.1.1.7 VOCs may be increasing; this warrants urgent further investigation.

Report

Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O'Toole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP, COVID-19 Genomics UK COG-UK consortium, Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NMet al., 2021, Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature, Vol: 593, Pages: 266-269, ISSN: 0028-0836

The SARS-CoV-2 lineage B.1.1.7, designated a Variant of Concern 202012/01 (VOC) by Public Health England1, originated in the UK in late Summer to early Autumn 20202. Whole genome SARS-CoV-2 sequence data collected from community-based diagnostic testing shows an unprecedentedly rapid expansion of the B.1.1.7 lineage during Autumn 2020, suggesting a selective advantage. We find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Time-varying reproduction numbers for the VOC and cocirculating lineages were estimated using SGTF and genomic data. The best supported models did not indicate a substantial difference in VOC transmissibility among different age groups. There is a consensus among all analyses that the VOC has a substantial transmission advantage with a 50% to 100% higher reproduction number.

Journal article

Mishra S, Flaxman S, Volz E, Johnson R, Geidelberg L, Hinsley WR, Ratmann O, Bhatt S, Gandy A, Rambaut A, Ferguson NMet al., 2021, mrc-ide/sarscov2-b.1.1.7: Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England

Code for our nature paper Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England

Software

Monod M, Chen Y, Zhu H, Brizzi A, Blenkinsop A, McManus M, Jogarah V, Hutchinson M, Ratmann O, Wahltinez O, Perello Cet al., 2021, ImperialCollegeLondon/US-covid19-agespecific-mortality-data: Version 1

This is the release related to our upcoming peer-reviewed age paper, where we use age-specific mobility data to estimate the epidemic in the USA by accounting for age-specific heterogeneity.

Software

Unwin H, Mishra S, Bradley V, Gandy A, Mellan T, Coupland H, Ish-Horowicz J, Vollmer M, Whittaker C, Filippi S, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Ainslie K, Baguelin M, Boonyasiri A, Brazeau N, Cattarino L, Cucunuba Z, Cuomo-Dannenburg G, Dorigatti I, Eales O, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Siveroni I, Thompson H, Walker P, Walters C, Watson O, Whittles L, Ghani A, Ferguson N, Riley S, Donnelly C, Bhatt S, Flaxman Set al., 2020, State-level tracking of COVID-19 in the United States, Nature Communications, Vol: 11, Pages: 1-9, ISSN: 2041-1723

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available deathdata within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on therate of transmission of SARS-CoV-2. We estimate thatRtwas only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.

Journal article

Novitsky V, Zahralban-Steele M, Moyo S, Nkhisang T, Maruapula D, McLane MF, Leidner J, Bennett K, Consortium P, Wirth KE, Gaolathe T, Kadima E, Chakalisa U, Holme MP, Lockman S, Mmalane M, Makhema J, Gaseitsiwe S, DeGruttola V, Essex Met al., 2020, Mapping of HIV-1C transmission networks reveals extensive spread of viral lineages across villages in Botswana treatment-as-prevention trial, Journal of Infectious Diseases, Vol: 222, Pages: 1670-1680, ISSN: 0022-1899

BackgroundPhylogenetic mapping of HIV-1 lineages circulating across defined geographical locations is promising for better understanding HIV transmission networks to design optimal prevention interventions.MethodsWe obtained near full-length HIV-1 genome sequences from people living with HIV (PLWH), including participants on antiretroviral treatment in the Botswana Combination Prevention Project, conducted in 30 Botswana communities in 2013–2018. Phylogenetic relationships among viral sequences were estimated by maximum likelihood.ResultsWe obtained 6078 near full-length HIV-1C genome sequences from 6075 PLWH. We identified 984 phylogenetically distinct HIV-1 lineages (molecular HIV clusters) circulating in Botswana by mid-2018, with 2–27 members per cluster. Of these, dyads accounted for 62%, approximately 32% (n = 316) were found in single communities, and 68% (n = 668) were spread across multiple communities. Men in clusters were approximately 3 years older than women (median age 42 years, vs 39 years; P < .0001). In 65% of clusters, men were older than women, while in 35% of clusters women were older than men. The majority of identified viral lineages were spread across multiple communities.ConclusionsA large number of circulating phylogenetically distinct HIV-1C lineages (molecular HIV clusters) suggests highly diversified HIV transmission networks across Botswana communities by 2018.

Journal article

Monod M, Blenkinsop A, Xi X, Hebert D, Bershan S, Tietze S, Bradley VC, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, T Unwin HJ, C Vollmer MA, Weber S, Zhu H, Bezancon A, Ferguson NM, Mishra S, Flaxman S, Bhatt S, Ratmann Oet al., 2020, Report 32: Age groups that sustain resurging COVID-19 epidemics in the United States

<jats:title>Summary</jats:title><jats:p>Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.</jats:p><jats:sec><jats:title>One sentence summary</jats:title><jats:p>Adults aged 20-49 are a main driver of the COVID-19 epidemic in the United States; yet, in areas with resurging epidemics, opening schools will lea

Journal article

Monod M, Blenkinsop A, Xi X, Herbert D, Bershan S, Tietze S, Bradley V, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin H, Vollmer M, Weber S, Zhu H, Bezancon A, Ferguson N, Mishra S, Flaxman S, Bhatt S, Ratmann O, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Green W, Hamlet A, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Walters C, Donnelly C, Okell L, Bhatia S, Brazeau N, Eales O, Haw D, Imai N, Jauneikaite E, Lees J, Mousa A, Olivera Mesa D, Skarp J, Whittles Let al., 2020, Report 32: Targeting interventions to age groups that sustain COVID-19 transmission in the United States, Pages: 1-32

Following ini􀀂al declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementa􀀂on of non-pharmaceu􀀂cal inter-ven􀀂ons, it is s􀀂ll not known how they are impacted by changing contact pa􀀁erns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impact the loosening of interven􀀂ons such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanis􀀂cally to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact pa􀀁erns and use this rich rela􀀂onship to reconstruct accurate trans-mission dynamics. Contrary to anecdotal evidence, we find li􀀁le support for age-shi􀀃s in contact and transmission dynamics over 􀀂me. We es􀀂mate that, un􀀂l August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infec􀀂ons in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with con􀀂nued, community-wide transmission, our transmission model predicts that re-opening kindergartens and el-ementary schools could facilitate spread and lead to considerable excess COVID-19 a􀀁ributable deaths over a 90-day period. These findings indicate that targe􀀂ng interven􀀂ons to adults aged 20-49 are an important con-sidera􀀂on in hal􀀂ng resurgent epidemics, and preven􀀂ng COVID-19-a􀀁ributable deaths when kindergartens and elementary schools reopen.

Journal article

Unwin HJT, Mishra S, Bradley VC, Gandy A, Mellan TA, Coupland H, Ish-Horowicz J, Vollmer MAC, Whittaker C, Filippi SL, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Ainslie KEC, Baguelin M, Boonyasiri A, Brazeau NF, Cattarino L, Cucunuba Z, Cuomo-Dannenburg G, Dorigatti I, Eales OD, Eaton JW, van Elsland SL, FitzJohn RG, Gaythorpe KAM, Green W, Hinsley W, Jeffrey B, Knock E, Laydon DJ, Lees J, Nedjati-Gilani G, Nouvellet P, Okell L, Parag KV, Siveroni I, Thompson HA, Walker P, Walters CE, Watson OJ, Whittles LK, Ghani AC, Ferguson NM, Riley S, Donnelly CA, Bhatt S, Flaxman Set al., 2020, State-level tracking of COVID-19 in the United States

<jats:title>Abstract</jats:title><jats:p>As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.</jats:p>

Working paper

Hanke K, Fiedler S, Grumann C, Ratmann O, Hauser A, Klink P, Meixenberger K, Altmann B, Zimmermann R, Marcus U, Bremer V, Auwärter V, Bannert Net al., 2020, A recent human immunodeficiency virus outbreak among people who inject drugs in Munich, Germany, is associated with consumption of synthetic cathinones, Open Forum Infectious Diseases, Vol: 7, Pages: ofaa192-ofaa192, ISSN: 2328-8957

Background: Needle and syringe sharing among people who inject drugs (PWID) can result in a rapid regional spread of a human immunodeficiency virus (HIV) variant. Such outbreaks have been identified recently in several countries and have raised public health attention because of an association with new psychoactive substances (NPS). Methods: Dried serum spots from approximately 60% of newly diagnosed HIV cases in Germany in 2013-2018 were received together with statutory notification data. Samples were sequenced in the pol-region, genotyped, and viral phylogenies were analyzed. For selected samples, the hepatitis C virus (HCV) status and the presence of NPS were determined. Results: An outbreak of closely related 27 subtype C infections with a core of 11 cases with almost identical sequences was identified using phylogenetic analyses. The first case of the outbreak was diagnosed in 2015, and the last one was in 2018. With exception of 3 infections, all were reported from Munich, the capital of the federal state of Bavaria. Of 26 analyzed outbreak members, 24 (92.3%) had a resolved or viremic HCV coinfection. In 8 of 18 (44%) cases, α-pyrrolidinopentiothiophenone and/or the related substance α-pyrrolidinoheptiophenone was identified. Conclusions: Despite harm reduction services in place, HIV outbreaks of considerable size can occur in PWID. The establishment of a real-time molecular surveillance is advised to rapidly identify outbreaks and target prevention measures.

Journal article

Mellan TA, Hoeltgebaum HH, Mishra S, Whittaker C, Schnekenberg RP, Gandy A, Unwin HJT, Vollmer MAC, Coupland H, Hawryluk I, Faria NR, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie KEC, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Eaton J, Elsland SLV, Gaythorpe KAM, Green W, Knock E, Laydon D, Lees JA, Mousa A, Nedjati-Gilani G, Nouvellet P, Parag KV, Thompson HA, Verity R, Walters CE, Wang H, Wang Y, Watson OJ, Whittles L, Xi X, Dorigatti I, Walker P, Ghani AC, Riley S, Ferguson NM, Donnelly CA, Flaxman S, Bhatt Set al., 2020, Subnational analysis of the COVID-19 epidemic in Brazil

<jats:label>1</jats:label><jats:title>Abstract</jats:title><jats:p>Brazil is currently reporting the second highest number of COVID-19 deaths in the world. Here we characterise the initial dynamics of COVID-19 across the country and assess the impact of non-pharmaceutical interventions (NPIs) that were implemented using a semi-mechanistic Bayesian hierarchical modelling approach. Our results highlight the significant impact these NPIs had across states, reducing an average <jats:italic>R<jats:sub>t</jats:sub> &gt;</jats:italic> 3 to an average of 1.5 by 9-May-2020, but that these interventions failed to reduce <jats:italic>R<jats:sub>t</jats:sub></jats:italic> &lt; 1, congruent with the worsening epidemic Brazil has experienced since. We identify extensive heterogeneity in the epidemic trajectory across Brazil, with the estimated number of days to reach 0.1% of the state population infected since the first nationally recorded case ranging from 20 days in São Paulo compared to 60 days in Goiás, underscoring the importance of sub-national analyses in understanding asynchronous state-level epidemics underlying the national spread and burden of COVID-19.</jats:p>

Journal article

Vollmer M, Mishra S, Unwin J, Gandy A, Mellan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Djaafara B, Eaton J, van Elsland S, FitzJohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati-Gilani G, Nouvellet P, Olivera D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, A sub-national analysis of the rate of transmission of COVID-19 in Italy, medRxiv

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could le

Journal article

Mellan T, Hoeltgebaum H, Mishra S, Whittaker C, Schnekenberg R, Gandy A, Unwin H, Vollmer M, Coupland H, Hawryluk I, Rodrigues Faria N, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Okell L, Dorigatti I, Walker P, Ghani A, Riley S, Ferguson N, Donnelly C, Flaxman S, Bhatt Set al., 2020, Report 21: Estimating COVID-19 cases and reproduction number in Brazil

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemicusing three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and wetherefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. Thedistribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, weestimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (ameasure of transmission intensity) at the start of the epidemic meant that an infected individual wouldinfect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that thereproduction number remains above 1. A reproduction number above 1 means that the epidemic isnot yet controlled and will continue to grow. These trends are in stark contrast to other major COVID19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproductionnumber below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our resultssuggest that further action is needed to limit spread and prevent health system overload.

Report

Vollmer M, Mishra S, Unwin H, Gandy A, Melan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, Report 20: A sub-national analysis of the rate of transmission of Covid-19 in Italy

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28; 238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a

Report

Hoornenborg E, Coyer L, Boyd A, Achterbergh RCA, van der Loeff MFS, Bruisten S, de Vries HJC, Koopsen J, van de Laar TJW, Prins Met al., 2020, High incidence of HCV in HIV-negative men who have sex with men using pre-exposure prophylaxis, Journal of Hepatology, Vol: 72, Pages: 855-864, ISSN: 0168-8278

Background & AimsHCV has emerged as a sexually transmitted infection (STI) among HIV-positive men who have sex with men (MSM). We evaluated HCV incidence and its risk factors among HIV-negative MSM using HIV pre-exposure prophylaxis (PrEP).MethodsParticipants of the Amsterdam PrEP project were tested for HCV antibodies or HCV-RNA every 6 months. Participants used daily or event-driven PrEP and could switch regimens during follow-up. We calculated incidence rates (IRs) for overall HCV infection and separately for primary and re-infection. A univariable Bayesian exponential survival model was used to identify risk factors associated with incident HCV infection. The HCV NS5B gene fragment (709 bp) was sequenced and compared to HCV isolates from HIV-positive MSM and other risk groups (n = 419) using phylogenetic analysis.ResultsAmong 350 participants contributing 653.6 person-years (PYs), we detected 15 HCV infections in 14 participants (IR = 2.30/100PY). There were 8 primary infections (IR = 1.27/100PY) and 7 re-infections (IR = 27.8/100PY). IR was 2.71/100PY in daily and 1.15/100PY in event-driven PrEP users. Factors associated with incident HCV infection were higher number of receptive condomless anal sex acts with casual partners (posterior hazard ratio [HR] 1.57 per ln increase; 95% credibility interval [CrI] 1.09–2.20), anal STI (posterior HR 2.93; 95% CrI 1.24–7.13), injecting drug use (posterior HR 4.69; 95% CrI 1.61–12.09) and sharing straws when snorting drugs (posterior HR 2.62; 95% CrI 1.09–6.02). We identified robust MSM-specific HCV clusters of subtypes 1a, 4d, 2b and 3a, which included MSM with and without HIV.ConclusionsHIV-negative MSM using PrEP are at risk of incident HCV infection, while identified risk factors are similar to those in HIV-positive MSM. Regular HCV testing is needed, especially for those with a previous HCV infection and those reporting risk factors.Lay summaryWe report that hepatitis C virus infections are

Journal article

Bbosa N, Ssemwanga D, Ssekagiri A, Xi X, Mayanja Y, Bahemuka U, Seeley J, Pillay D, Abeler-Dörner L, Golubchik T, Fraser C, Kaleebu P, Ratmann Oet al., 2020, Phylogenetic and demographic characterization of directed HIV-1 transmission using deep sequences from high-risk and general population cohorts/groups in Uganda, Viruses, Vol: 12, ISSN: 1999-4915

Across sub-Saharan Africa, key populations with elevated HIV-1 incidence and/or prevalence have been identified, but their contribution to disease spread remains unclear. We performed viral deep-sequence phylogenetic analyses to quantify transmission dynamics between the general population (GP), fisherfolk communities (FF), and women at high risk of infection and their clients (WHR) in central and southwestern Uganda. Between August 2014 and August 2017, 6185 HIV-1 positive individuals were enrolled in 3 GP and 10 FF communities, 3 WHR enrollment sites. A total of 2531 antiretroviral therapy (ART) naïve participants with plasma viral load >1000 copies/mL were deep-sequenced. One hundred and twenty-three transmission networks were reconstructed, including 105 phylogenetically highly supported source-recipient pairs. Only one pair involved a WHR and male participant, suggesting that improved population sampling is needed to assess empirically the role of WHR to the transmission dynamics. More transmissions were observed from the GP communities to FF communities than vice versa, with an estimated flow ratio of 1.56 (95% CrI 0.68-3.72), indicating that fishing communities on Lake Victoria are not a net source of transmission flow to neighboring communities further inland. Men contributed disproportionally to HIV-1 transmission flow regardless of age, suggesting that prevention efforts need to better aid men to engage with and stay in care.

Journal article

Capoferri AA, Lamers SL, Grabowski MK, Rose R, Wawer MJ, Serwadda D, Gray RH, Quinn TC, Kigozi G, Kagaayi J, Laeyendecker O, Rakai Health Sciences Program and the PANGEA Consortiumet al., 2020, Recombination analysis of near full-length HIV-1 sequences and the identification of a potential new circulating recombinant form from Rakai, Uganda., AIDS Research and Human Retroviruses, ISSN: 0889-2229

The Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium has been vital in the generation and examination of near full-length HIV-1 sequences generated from Sub-Saharan Africa. In this study, we examined a subset (n = 275) of sequences from Rakai, Uganda, collected between August 2011 and January 2015. Sequences were initially screened with COMET for subtyping and then evaluated using bootscanning and phylogenetic inference. Among 275 sequences, 38.6% were subtype D, 19.3% were subtype A, 2.9% were subtype C, and 39.3% were recombinant. The recombinants were structurally diverse in the number of breakpoints observed, the location of recombinant segments, and represented subtypes, with AD recombinants accounting for the majority of all recombinants (29.8%). Within the AD subpopulation, we identified a potential new circulating recombinant form in five individuals where the polymerase gene was subtype D and most of env was subtype A (D-A junctures at HXB2 6760 and 8709). While the breakpoints were identical for the viruses from these individuals, the viral fragments did not cluster together. These results suggest selection for a viral strain where properties of the subtype A and subtype D portions of the virus confer a survival advantage. The continued study of recombinants will increase our breadth of knowledge for the genetic diversity and evolution of HIV-1, which can further contribute to our understanding toward a universal HIV-1 vaccine.

Journal article

Ratmann O, Kagaayi J, Hall M, Golubchick T, Kigozi G, Xi X, Wymant C, Nakigozi G, Abeler-Dörner L, Bonsall D, Gall A, Hoppe A, Kellam P, Bazaale J, Kalibbala S, Laeyendecker O, Lessler J, Nalugoda F, Chang LW, de Oliveira T, Pillay D, Quinn TC, Reynolds SJ, Spencer SEF, Ssekubugu R, Serwadda D, Wawer MJ, Gray RH, Fraser C, Grabowski MK, Ayles H, Bowden R, Calvez V, Cohen M, Dennis A, Essex M, Fidler S, Frampton D, Hayes R, Herbeck J, Kaleebu P, Kityo C, Lingappa J, Novitsky V, Paton N, Rambaut A, Seeley J, Ssemwanga D, Tanser F, Lutalo T, Galiwango R, Makumbi F, Sewankambo NK, Nabukalu D, Ndyanabo A, Ssekasanvu J, Nakawooya H, Nakukumba J, Kigozi GN, Nantume BS, Resty N, Kambasu J, Nalugemwa M, Nakabuye R, Ssebanobe L, Nankinga J, Kayiira A, Nanfuka G, Ahimbisibwe R, Tomusange S, Galiwango RM, Nakalanzi M, Otobi JO, Ankunda D, Ssembatya JL, Ssemanda JB, Kato E, Kairania R, Kisakye A, Batte J, Ludigo J, Nampijja A, Watya S, Nehemia K, Anyokot SM, Mwinike J, Kibumba G, Ssebowa P, Mondo G, Wasswa F, Nantongo A, Kakembo R, Galiwango J, Ssemango G, Redd AD, Santelli J, Kennedy CE, Wagman J, Tobian Aet al., 2020, Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda, The Lancet HIV, Vol: 7, Pages: e173-e183, ISSN: 2352-3018

BackgroundInternational and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda.MethodsWe did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15–49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population.FindingsBetween Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4–7·3) of transmissions occurred within lakeside areas, 89·2% (86·0–91·

Journal article

Grant HE, Hodcroft EB, Ssemwanga D, Kitayimbwa JM, Yebra G, Esquivel Gomez LR, Frampton D, Gall A, Kellam P, de Oliveira T, Bbosa N, Nsubuga RN, Kibengo F, Kwan TH, Lycett S, Kao R, Robertson DL, Ratmann O, Fraser C, Pillay D, Kaleebu P, Leigh Brown AJet al., 2020, Pervasive and non-random recombination in near full-length HIV genomes from Uganda., Virus Evol, Vol: 6, Pages: 1-12, ISSN: 2057-1577

Recombination is an important feature of HIV evolution, occurring both within and between the major branches of diversity (subtypes). The Ugandan epidemic is primarily composed of two subtypes, A1 and D, that have been co-circulating for 50 years, frequently recombining in dually infected patients. Here, we investigate the frequency of recombinants in this population and the location of breakpoints along the genome. As part of the PANGEA-HIV consortium, 1,472 consensus genome sequences over 5 kb have been obtained from 1,857 samples collected by the MRC/UVRI & LSHTM Research unit in Uganda, 465 (31.6 per cent) of which were near full-length sequences (>8 kb). Using the subtyping tool SCUEAL, we find that of the near full-length dataset, 233 (50.1 per cent) genomes contained only one subtype, 30.8 per cent A1 (n = 143), 17.6 per cent D (n = 82), and 1.7 per cent C (n = 8), while 49.9 per cent (n = 232) contained more than one subtype (including A1/D (n = 164), A1/C (n = 13), C/D (n = 9); A1/C/D (n = 13), and 33 complex types). K-means clustering of the recombinant A1/D genomes revealed a section of envelope (C2gp120-TMgp41) is often inherited intact, whilst a generalized linear model was used to demonstrate significantly fewer breakpoints in the gag-pol and envelope C2-TM regions compared with accessory gene regions. Despite similar recombination patterns in many recombinants, no clearly supported circulating recombinant form (CRF) was found, there was limited evidence of the transmission of breakpoints, and the vast majority (153/164; 93 per cent) of the A1/D recombinants appear to be unique recombinant forms. Thus, recombination is pervasive with clear biases in breakpoint location, but CRFs are not a significant feature, characteristic of a complex, and diverse epidemic.

Journal article

Chatzilena A, van Leeuwen E, Ratmann O, Baguelin M, Demiris Net al., 2019, Contemporary statistical inference for infectious disease models using Stan, Epidemics: the journal of infectious disease dynamics, Vol: 29, ISSN: 1755-4365

This paper is concerned with the application of recent statistical advances to inference of infectious disease dynamics. We describe the fitting of a class of epidemic models using Hamiltonian Monte Carlo and variational inference as implemented in the freely available Stan software. We apply the two methods to real data from outbreaks as well as routinely collected observations. Our results suggest that both inference methods are computationally feasible in this context, and show a trade-off between statistical efficiency versus computational speed. The latter appears particularly relevant for real-time applications.

Journal article

Le Vu S, Ratmann O, Delpech V, Brown A, Gill ON, Tostevin A, Dunn D, Fraser C, Volz Eet al., 2019, HIV-1 Transmission Patterns in Men Who Have Sex with Men: Insights from Genetic Source Attribution Analysis, AIDS Research and Human Retroviruses, ISSN: 0889-2229

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00459135&limit=30&person=true&page=2&respub-action=search.html