Imperial College London

ProfessorPierreDegond

Faculty of Natural SciencesDepartment of Mathematics

Chair in Applied Mathematics
 
 
 
//

Contact

 

+44 (0)20 7594 1474p.degond Website CV

 
 
//

Location

 

6M38Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Degond:2019:10.1214/19-AAP1469,
author = {Degond, P and Pulvirenti, M},
doi = {10.1214/19-AAP1469},
journal = {Annals of Applied Probability},
pages = {2594--2612},
title = {Propagation of chaos for topological interactions},
url = {http://dx.doi.org/10.1214/19-AAP1469},
volume = {29},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - We consider aN-particle model describing an alignment mechanism due to a topolog-ical interaction among the agents. We show that the kinetic equation, expected to holdin the mean-field limitN→∞, as following from the previous analysis in Ref. [3] can berigorously derived. This means that the statistical independence (propagation of chaos)is indeed recovered in the limit, provided it is assumed at time zero.
AU - Degond,P
AU - Pulvirenti,M
DO - 10.1214/19-AAP1469
EP - 2612
PY - 2019///
SN - 1050-5164
SP - 2594
TI - Propagation of chaos for topological interactions
T2 - Annals of Applied Probability
UR - http://dx.doi.org/10.1214/19-AAP1469
UR - https://projecteuclid.org/euclid.aoap/1563869051
UR - http://hdl.handle.net/10044/1/67443
VL - 29
ER -