Imperial College London

ProfessorPaulFreemont

Faculty of MedicineDepartment of Infectious Disease

Chair in Protein Crystallography
 
 
 
//

Contact

 

+44 (0)20 7594 5327p.freemont

 
 
//

Location

 

259Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

325 results found

Capstick A, Palermo F, Zakka K, Fletcher-Lloyd N, Walsh C, Cui T, Kouchaki S, Jackson R, Tran M, Crone M, Jensen K, Freemont P, Vaidyanathan R, Kolanko M, True J, Daniels S, Wingfield D, Nilforooshan R, Barnaghi Pet al., 2024, Digital remote monitoring for screening and early detection of urinary tract infections, npj Digital Medicine, Vol: 7, ISSN: 2398-6352

Urinary Tract Infections (UTIs) are one of the most prevalent bacterial infections in older adults and a significant contributor to unplanned hospital admissions in People Living with Dementia (PLWD), with early detection being crucial due to the predicament of reporting symptoms and limited help-seeking behaviour. The most common diagnostic tool is urine sample analysis, which can be time-consuming and is only employed where UTI clinical suspicion exists. In this method development and proof-of-concept study, participants living with dementia were monitored via low-cost devices in the home that passively measure activity, sleep, and nocturnal physiology. Using 27828 person-days of remote monitoring data (from 117 participants), we engineered features representing symptoms used for diagnosing a UTI. We then evaluate explainable machine learning techniques in passively calculating UTI risk and perform stratification on scores to support clinical translation and allow control over the balance between alert rate and sensitivity and specificity. The proposed UTI algorithm achieves a sensitivity of 65.3% (95% Confidence Interval (CI) = 64.3–66.2) and specificity of 70.9% (68.6–73.1) when predicting UTIs on unseen participants and after risk stratification, a sensitivity of 74.7% (67.9–81.5) and specificity of 87.9% (85.0–90.9). In addition, feature importance methods reveal that the largest contributions to the predictions were bathroom visit statistics, night-time respiratory rate, and the number of previous UTI events, aligning with the literature. Our machine learning method alerts clinicians of UTI risk in subjects, enabling earlier detection and enhanced screening when considering treatment.

Journal article

Berezin C-T, Aguilera LU, Billerbeck S, Bourne PE, Densmore D, Freemont P, Gorochowski TE, Hernandez SI, Hillson NJ, King CR, Köpke M, Ma S, Miller KM, Moon TS, Moore JH, Munsky B, Myers CJ, Nicholas DA, Peccoud SJ, Zhou W, Peccoud Jet al., 2023, Ten simple rules for managing laboratory information., PLoS Comput Biol, Vol: 19

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

Journal article

Ren R, Cai S, Fang X, Wang X, Zhang Z, Damiani M, Hudlerova C, Rosa A, Hope J, Cook NJ, Gorelkin P, Erofeev A, Novak P, Badhan A, Crone M, Freemont P, Taylor GP, Tang L, Edwards C, Shevchuk A, Cherepanov P, Luo Z, Tan W, Korchev Y, Ivanov AP, Edel JBet al., 2023, Multiplexed detection of viral antigen and RNA using nanopore sensing and encoded molecular probes, Nature Communications, Vol: 14, ISSN: 2041-1723

We report on single-molecule nanopore sensing combined with position-encoded DNA molecular probes, with chemistry tuned to simultaneously identify various antigen proteins and multiple RNA gene fragments of SARS-CoV-2 with high sensitivity and selectivity. We show that this sensing strategy can directly detect spike (S) and nucleocapsid (N) proteins in unprocessed human saliva. Moreover, our approach enables the identification of RNA fragments from patient samples using nasal/throat swabs, enabling the identification of critical mutations such as D614G, G446S, or Y144del among viral variants. In particular, it can detect and discriminate between SARS-CoV-2 lineages of wild-type B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.539 (Omicron) within a single measurement without the need for nucleic acid sequencing. The sensing strategy of the molecular probes is easily adaptable to other viral targets and diseases and can be expanded depending on the application required.

Journal article

Ramlaul K, Feng Z, Canavan C, de Martin Garrido N, Carreno D, Crone M, Jensen K, Li B, Barnett H, Riglar D, Freemont P, Miller D, Aylett Cet al., 2023, A 3D-printed flow-cell for on-grid purification of electron microscopy samples directly from lysate, Journal of Structural Biology, Vol: 215, Pages: 1-12, ISSN: 1047-8477

While recent advances in cryo-EM, coupled with single particle analysis, have thepotential to allow structure determination in a near-native state from vanishingly few individualparticles, this vision has yet to be realised in practise. Requirements for particle numbers thatcurrently far exceed the theoretical lower limits, challenges with the practicalities of achievinghigh concentrations for difficult-to-produce samples, and inadequate sample-dependent imagingconditions, all result in significant bottlenecks preventing routine structure determination usingcryo-EM. Therefore, considerable efforts are being made to circumvent these bottlenecks bydeveloping affinity purification of samples on-grid; at once obviating the need to produce largeamounts of protein, as well as more directly controlling the variable, and sample-dependent,process of grid preparation.In this proof-of-concept study, we demonstrate a further practical step towards thisparadigm, developing a 3D-printable flow-cell device to allow on-grid affinity purification fromraw inputs such as whole cell lysates, using graphene oxide-based affinity grids. Our flow-celldevice can be interfaced directly with routinely-used laboratory equipment such as liquidchromatographs, or peristaltic pumps, fitted with standard chromatographic (1/16”) connectors,and can be used to allow binding of samples to affinity grids in a controlled environment priorto the extensive washing required to remove impurities. Furthermore, by designing a devicewhich can be 3D printed and coupled to routinely used laboratory equipment, we hope toincrease the accessibility of the techniques presented herein to researchers working towardssingle-particle macromolecular structures.

Journal article

Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MGet al., 2023, DNA synthesis technologies to close the gene writing gap (vol 7, pg 144, 2023), NATURE REVIEWS CHEMISTRY, Vol: 7, Pages: 590-590

Journal article

Derqui N, Koycheva A, Zhou J, Pillay TD, Crone MA, Hakki S, Fenn J, Kundu R, Varro R, Conibear E, Madon KJ, Barnett JL, Houston H, Singanayagam A, Narean JS, Tolosa-Wright MR, Mosscrop L, Rosadas C, Watber P, Anderson C, Parker E, Freemont PS, Ferguson NM, Zambon M, McClure MO, Tedder R, Barclay WS, Dunning J, Taylor GP, Lalvani A, INSTINCT and ATACCC study groupet al., 2023, Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study, The Lancet Microbe, Vol: 4, Pages: e397-e408, ISSN: 2666-5247

BACKGROUND: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS: From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·3

Journal article

Kelwick R, Webb A, Heliot A, Tresserras Segura C, Freemont Pet al., 2023, Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology, Journal of Extracellular Biology, Vol: 2, Pages: 1-12, ISSN: 2768-2811

Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The extracellular vesicle (EV) research community has rapidly expanded in recent years and are leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology.

Journal article

Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MGet al., 2023, DNA synthesis technologies to close the gene writing gap., Nat Rev Chem, Vol: 7, Pages: 144-161

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.

Journal article

Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MGet al., 2023, DNA synthesis technologies to close the gene writing gap, Nature Reviews Chemistry, Vol: 7, Pages: 144-161, ISSN: 2397-3358

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.

Journal article

Moore SJJ, Lai H-E, Li J, Freemont PSSet al., 2023, <i>Streptomyces</i> cell-free systems for natural product discovery and engineering, NATURAL PRODUCT REPORTS, Vol: 40, Pages: 228-236, ISSN: 0265-0568

Journal article

Kelwick R, Webb A, Freemont P, 2023, Opportunities for engineering Outer Membrane Vesicles (OMVs) using synthetic biology approaches, Extracellular Vesicles and Circulating Nucleic Acids, Vol: 4, Pages: 255-261, ISSN: 2767-6641

Gram-negative bacteria naturally shed lipid vesicles, which contain complex molecular cargoes, from their outer membrane. These outer membrane vesicles (OMVs) have important biological functions relating to microbial stress responses, microbiome regulation, and host-pathogen interactions. OMVs are also attractive vehicles for delivering drugs, vaccines, and other therapeutic agents because of their ability to interact with host cells and their natural immunogenic properties. OMVs are also set to have a positive impact on other biotechnological and medical applications including diagnostics, bioremediation, and metabolic engineering. We envision that the field of synthetic biology offers a compelling opportunity to further expand and accelerate the foundational research and downstream applications of OMVs in a range of applications including the provision of OMV-based healthcare technologies. In our opinion, we discuss how current and potential future synergies between OMV research and synthetic biology approaches might help to further accelerate OMV research and real-world applications for the benefit of animal and human health.

Journal article

Crone MA, Freemont PS, 2022, Simple low-cost production of DNA MS2 virus-like particles as molecular diagnostic controls, GEN Biotechnology, Vol: 1, Pages: 496-503, ISSN: 2768-1556

Suitable controls are integral for the validation and continued quality assurance of diagnostic workflows. Plasmids, DNA, or in vitro transcribed RNA are often used to validate novel diagnostic workflows, however, they are poorly representative of clinical samples. RNA phage virus-like particles (VLPs) packaged with exogenous RNA have been used in clinical diagnostics as workflow controls, serving as surrogates for infectious viral particles. Comparable controls for DNA viruses are more challenging to produce, with analogous DNA phages being infectious and packaging of DNA within RNA phages requiring complex purification procedures and expensive chemical linkers. We present a simple and inexpensive method to produce Emesvirus zinderi (MS2) VLPs, packaged with DNA, that makes use of affinity chromatography for purification and enzymatic production of exogenous DNA suitable for packaging. The produced VLPs were packaged with hepatitis B virus DNA and were then quantified using droplet digital PCR and calibrated against the WHO international standard using a commercial assay in an accredited clinical laboratory.

Journal article

Haines MC, Carling B, Marshall J, Shenshin VA, Baldwin GS, Freemont P, Storch Met al., 2022, basicsynbio and the BASIC SEVA collection: software and vectors for an established DNA assembly method, Synthetic Biology, Vol: 7, ISSN: 2397-7000

Standardized deoxyribonucleic acid (DNA) assembly methods utilizing modular components provide a powerful framework to explore designs and iterate through Design–Build–Test–Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use and enables hierarchical assemblies through an idempotent format. These features enable applications including pathway engineering, ribosome binding site (RBS) tuning, fusion protein engineering and multiplexed guide ribonucleic acid (RNA) expression. In this work, we present basicsynbio, open-source software encompassing a Web App (https://basicsynbio.web.app/) and Python Package (https://github.com/LondonBiofoundry/basicsynbio), enabling BASIC construct design via simple drag-and-drop operations or programmatically. With basicsynbio, users can access commonly used BASIC parts and linkers while designing new parts and assemblies with exception handling for common errors. Users can export sequence data and create instructions for manual or acoustic liquid-handling platforms. Instruction generation relies on the BasicBuild Open Standard, which is parsed for bespoke workflows and is serializable in JavaScript Object Notation for transfer and storage. We demonstrate basicsynbio, assembling 30 vectors using sequences including modules from the Standard European Vector Architecture (SEVA). The BASIC SEVA vector collection is compatible with BASIC and Golden Gate using BsaI. Vectors contain one of six antibiotic resistance markers and five origins of replication from different compatibility groups. The collection is available via Addgene under an OpenMTA agreement. Furthermore, vector sequences are available from within the basicsynbio application programming interface with other collections of parts and linkers, providing a powerful environment for designing assemblies for bioengineering applicat

Journal article

Patchsung M, Homchan A, Aphicho K, Suraritdechachai S, Wanitchanon T, Pattama A, Sappakhaw K, Meesawat P, Wongsatit T, Athipanyasilp A, Jantarug K, Athipanyasilp N, Buahom J, Visanpattanasin S, Niljianskul N, Chaiyen P, Tinikul R, Wichukchinda N, Mahasirimongkol S, Sirijatuphat R, Angkasekwinai N, Crone MA, Freemont PS, Joung J, Ladha A, Abudayyeh O, Gootenberg J, Zhang F, Chewapreecha C, Chanarat S, Horthongkham N, Pakotiprapha D, Uttamapinant Cet al., 2022, A multiplexed Cas13-based assay with point-of-care attributes for simultaneous COVID-19 diagnosis and variant surveillance, The CRISPR Journal, Vol: 6, Pages: 1-17, ISSN: 2573-1599

Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection—such as multiplexed detection for viral variant surveillance—may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)—including globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529)—all the while maintaining high levels of accuracy upon the detection of multiple SARS-CoV-2 gene targets. The platform has several attributes suitable for POC use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of such a technology in low- and middle-income countries, we locally produced and formulated our own recombinase polymerase amplification reaction and demonstrated its equivalent efficiency to commercial counterparts. Our tool—CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance that can be locally manufactured—may enable sustainable use of CRISPR diagnostics technologies for COVID-19 and other diseases in POC settings.

Journal article

Hakki S, Zhou J, Jonnerby J, Singanayagam A, Barnett JL, Madon KJ, Koycheva A, Kelly C, Houston H, Nevin S, Fenn J, Kundu R, Crone MA, Pillay TD, Ahmad S, Derqui-Fernandez N, Conibear E, Freemont PS, Taylor GP, Ferguson N, Zambon M, Barclay WS, Dunning J, Lalvani A, ATACCC study investigatorset al., 2022, Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: a prospective, longitudinal, community cohort study, The Lancet Respiratory Medicine, Vol: 10, Pages: 1061-1073, ISSN: 2213-2600

BACKGROUND: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. METHODS: The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. FINDINGS: Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3-7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and

Journal article

Cordery R, Reeves L, Zhou J, Rowan A, Watber P, Rosadas C, Crone M, Storch M, Freemont P, Mosscrop L, Cowley A, Zelent G, Bisset K, Le Blond H, Regmi S, Buckingham C, Junaideen R, Abdulla N, Eliahoo J, Mindlin M, Lamagni T, Barclay W, Taylor GP, Sriskandan Set al., 2022, Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London, The Lancet Microbe, Vol: 3, Pages: e814-e823, ISSN: 2666-5247

Background: Assessing transmission of SARS-CoV-2 by children in schools is of critical importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shed into air and onto fomites in both settings.Methods: Incidents involving exposure to at least one index pupil with COVID-19 in 8 schools were identified between October 2020-July 2021 (prevailing variants, original, alpha and delta). Weekly PCR testing for SARS-CoV-2 was undertaken on immediate classroom contacts (the “bubble”), non-bubble school contacts, and household contacts of index pupils, supported by genome sequencing, and on surface and air samples from school and home environments.Findings: Secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing 10 bubble classes (participation rate 8.8%, IQR 4.6-15.3%). Across 8 non-bubble classes, 3/62 pupils tested positive but these were unrelated to the original index case (participation rate 22.5%, IQR 9.7-32.3%). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously-negative household contacts from infected index pupils was 17.1% (6/35) rising to 27.7% (13/47) when considering all potentialinfections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools; fomite SARS-CoV-2 was identified in 4/189 (2.1%) samples in bubble classrooms, 2/127 (1.6%) samples in non-bubble classrooms, and 5/130 (3.8%) samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60/248 (24.2%) bedroom samples, 66/241 (27.4%) communal room samples, and 21/188 (11.2%) bathroom samples. Air sampling identified SARS-CoV-2 RNA in just 1/68 (1.5%) of school air samples, compared with 21/85 (24.7%) of air samples taken in homes.Interpretation: There was no evidence of large scale SARS-Co

Journal article

Mosscrop L, Watber P, Elliot P, Cooke G, Barclay W, Freemont PS, Rosadas C, Taylor GPet al., 2022, Evaluation of the impact of pre-analytical conditions on sample stability for the detection of SARS-CoV-2 RNA, Journal of Virological Methods, Vol: 309, Pages: 1-5, ISSN: 0166-0934

Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR. This is not always possible. We aimed to test the stability of SARS-CoV-2 RNA subjected to different pre-analytical conditions. Swabs were dipped into PBS containing cultured SARS-CoV-2 and placed in either a dry tube or a tube containing either normal saline or VTM. The tubes were then stored at different temperatures (20–50 °C) for variable periods (8 h to 5 days). Samples were tested by RT-qPCR targeting SARS-CoV-2 E gene. VTM outperformed swabs in saline and dry swabs in all conditions. Samples in VTM were stable, independent of a cold chain, for 5 days, with a maximum increase in cycle threshold (Ct) of 1.34 when held at 40 °C. Using normal saline as the transport media resulted in a loss of sensitivity (increased Ct) over time and with increasing temperature (up to 7.8 cycles compared to VTM). SARS-CoV-2 was not detected in 3/9 samples in normal saline when tested after 120 h incubation. Transportation of samples in VTM provides a high level of confidence in the results despite the potential for considerable, uncontrolled variation in temperature and longer transportation periods. False negative results may be seen after 96 h in saline and viral loads will appear lower.

Journal article

Mercer T, Almond N, Crone MA, Chain PSG, Deshpande A, Eveleigh D, Freemont P, Fuchs S, Garlick R, Huggett J, Kammel M, Li P-E, Milavec M, Marlowe EM, O'Sullivan DM, Page M, Pestano GA, Suliman S, Simen B, Sninsky JJ, Sopchak L, Tato CM, Vallone PM, Vandesompele J, White TJ, Zeichhardt H, Salit Met al., 2022, The Coronavirus Standards Working Group's roadmap for improved population testing, NATURE BIOTECHNOLOGY, Vol: 40, Pages: 1563-1568, ISSN: 1087-0156

Journal article

Crone M, MacDonald J, Freemont P, Siciliano Vet al., 2022, gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells, npj Systems Biology and Applications, Vol: 8, Pages: 1-7, ISSN: 2056-7189

Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and can be aided by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk. We next engineered a Lachnospiraceae bacterium Cas12a (dLbCas12a)-based repression system that downregulates target gene expression by means of steric hindrance of the cognate promoter. Finally, we generated a library of orthogonal synthetic dCas12a-repressed promoters and experimentally demonstrated it in HEK293FT, U2OS and H1299 cells lines. Our system expands the toolkit of mammalian synthetic promoters with a new complementary and orthogonal CRISPRi-based system, ultimately enabling the design of synthetic promoter libraries for multiplex gene perturbation that facilitate the understanding of complex cellular phenotypes.

Journal article

Crone MA, Freemont PS, 2022, Simple, low-cost production of DNA MS2 virus-like particles as molecular diagnostic controls

<jats:title>Abstract</jats:title><jats:p>Suitable controls are integral for the validation and continued quality assurance of diagnostic workflows. Plasmids, DNA or <jats:italic>in vitro</jats:italic> transcribed RNA are often used to validate novel diagnostic workflows, however, they are poorly representative of clinical samples. RNA phage virus-like particles packaged with exogenous RNA have been used in clinical diagnostics as workflow controls, serving as surrogates for infectious viral particles. Comparable controls for DNA viruses are more challenging to produce, with analogous DNA phages being infectious and packaging of DNA within RNA phages requiring complex purification procedures and expensive chemical linkers. We present a simple and inexpensive method to produce MS2 virus-like particles, packaged with DNA, that makes use of affinity chromatography for purification and enzymatic production of exogenous DNA suitable for packaging. The produced virus-like particles were packaged with Hepatitis B Virus DNA and were then quantified using droplet digital PCR and calibrated against the WHO international standard using a commercial assay in an accredited clinical laboratory.</jats:p>

Journal article

Webb A, Allan F, Kelwick R, Beshah F, Kinunghi S, Templeton MR, Emery A, Freemont Pet al., 2022, Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS, PLOS Neglected Tropical Diseases, Vol: 16, Pages: 1-19, ISSN: 1935-2727

Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or ‘SNAILS’. Here we show that ‘SNAILS’ enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas.

Journal article

Dixon TA, Freemont PS, Johnson RA, Pretorius ISet al., 2022, A global forum on synthetic biology: the need for international engagement, NATURE COMMUNICATIONS, Vol: 13

Journal article

Gil Rosa B, Akingbade OE, Guo X, Gonzalez-Macia L, Crone MA, Cameron LP, Freemont P, Choy K-L, Güder F, Yeatman E, Sharp DJ, Li Bet al., 2022, Multiplexed immunosensors for point-of-care diagnostic applications, Biosensors and Bioelectronics, Vol: 203, ISSN: 0956-5663

Accurate, reliable, and cost-effective immunosensors are clinically important for the early diagnosis and monitoring of progressive diseases, and multiplexed sensing is a promising strategy for the next generation of diagnostics. This strategy allows for the simultaneous detection and quantification of multiple biomarkers with significantly enhanced reproducibility and reliability, whilst requiring smaller sample volumes, fewer materials, and shorter average analysis time for individual biomarkers than individual tests. In this opinionated review, we compare different techniques for the development of multiplexed immunosensors. We review the state-of-the-art approaches in the field of multiplexed immunosensors using electrical, electrochemical, and optical methods. The barriers that prevent translating this sensing strategy into clinics are outlined together with the potential solutions. We also share our vision on how multiplexed immunosensors will continue their evolution in the coming years.

Journal article

Wong G, Lim LR, Tan YQ, Go MK, Bell DJ, Freemont PS, Yew WSet al., 2022, Reconstituting the complete biosynthesis of <i>D</i>-lysergic acid in yeast, NATURE COMMUNICATIONS, Vol: 13

Journal article

Singanayagam A, Hakki S, Dunning J, Madon KJ, Crone MA, Koycheva A, Derqui-Fernandez N, Barnett JL, Whitfield MG, Varro R, Charlett A, Kundu R, Fenn J, Cutajar J, Quinn V, Conibear E, Barclay W, Freemont PS, Taylor GP, Ahmad S, Zambon M, Ferguson NM, Lalvani A, ATACCC Study Investigatorset al., 2022, Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study., The Lancet. Infectious diseases, Vol: 22, Pages: 183-195, ISSN: 1473-3099

<h4>Background</h4>The SARS-CoV-2 delta (B.1.617.2) variant is highly transmissible and spreading globally, including in populations with high vaccination rates. We aimed to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community.<h4>Methods</h4>Between Sept 13, 2020, and Sept 15, 2021, 602 community contacts (identified via the UK contract-tracing system) of 471 UK COVID-19 index cases were recruited to the Assessment of Transmission and Contagiousness of COVID-19 in Contacts cohort study and contributed 8145 upper respiratory tract samples from daily sampling for up to 20 days. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. We analysed transmission risk by vaccination status for 231 contacts exposed to 162 epidemiologically linked delta variant-infected index cases. We compared viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections. Primary outcomes for the epidemiological analysis were to assess the secondary attack rate (SAR) in household contacts stratified by contact vaccination status and the index cases' vaccination status. Primary outcomes for the viral load kinetics analysis were to detect differences in the peak viral load, viral growth rate, and viral decline rate between participants according to SARS-CoV-2 variant and vaccination status.<h4>Findings</h4>The SAR in household contacts exposed to the delta variant was 25% (95% CI 18-33) for fully vaccinated individuals compared with 38% (24-53) in unvaccinated individuals. The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (medi

Journal article

Vickers CE, Freemont PS, 2022, Pandemic preparedness: synthetic biology and publicly funded biofoundries can rapidly accelerate response time COMMENT, NATURE COMMUNICATIONS, Vol: 13

Journal article

Haines MC, Carling B, Marshall J, Shenshin VA, Baldwin GS, Storch M, Freemont Pet al., 2022, basicsynbio and the BASIC SEVA collection: Software and vectors for an established DNA assembly method

<jats:title>Abstract</jats:title><jats:p>Standardized DNA assembly methods utilizing modular components provide a powerful framework to explore design spaces and iterate through Design-Build-Test-Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use, while enabling simple hierarchical assemblies through an idempotent format. These features facilitate various applications including pathway engineering, ribosome binding site tuning, fusion protein engineering and multiplexed gRNA expression. In this work we present basicsynbio, an open-source software encompassing a Web App (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://basicsynbio.web.app/">https://basicsynbio.web.app/</jats:ext-link>) and Python Package (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/LondonBiofoundry/basicsynbio">https://github.com/LondonBiofoundry/basicsynbio</jats:ext-link>). With basicsynbio, users can access commonly used BASIC parts and linkers while robustly designing new parts and assemblies with exception handling for common design errors. Users can export sequence data and create build instructions for manual or acoustic liquid-handling platforms. The generation of build instructions relies on the BasicBuild Open Standard which is easily parsed for bespoke workflows and is serializable in Java Script Object Notation for transfer and storage. We demonstrate basicsynbio by assembling a collection of 30 vectors using various sequences including modules from the Standard European Vector Architecture (SEVA). The BASIC SEVA collection is compatible with BASIC and Golden Gate using BsaI. It encompasses vectors containing six antibiotic resistance mark

Journal article

Lalvani A, Hakki S, Singanayagam A, Dunning J, Barnett JL, Crone MA, Freemont PS, Ferguson NMet al., 2022, Transmissibility of SARS-CoV-2 among fully vaccinated individuals reply, LANCET INFECTIOUS DISEASES, Vol: 22, Pages: 18-19, ISSN: 1473-3099

Journal article

Kennedy A, Griffin G, Freemont PS, Polizzi KM, Moore SJet al., 2022, A curcumin direct protein biosensor for cell-free prototyping., Eng Biol, Vol: 6, Pages: 62-68

In synthetic biology, biosensors are routinely coupled with a gene expression system for detecting small molecules and physical signals. We reveal a fluorescent complex, based on the interaction of an Escherichia coli double bond reductase (EcCurA), as a detection unit with its substrate curcumin-we call this a direct protein (DiPro) biosensor. Using a cell-free synthetic biology approach, we use the EcCurA DiPro biosensor to fine tune 10 reaction parameters (cofactor, substrate, and enzyme levels) for cell-free curcumin biosynthesis, assisted through acoustic liquid handling robotics. Overall, we increase EcCurA-curcumin DiPro fluorescence within cell-free reactions by 78-fold. This finding adds to the growing family of protein-ligand complexes that are naturally fluorescent and potentially exploitable for a range of applications, including medical imaging to engineering high-value chemicals.

Journal article

Han P, Go MK, Chow JY, Xue B, Lim YP, Crone MA, Storch M, Freemont PS, Yew WSet al., 2021, A high-throughput pipeline for scalable kit-free RNA extraction, Scientific Reports, Vol: 11, Pages: 1-10, ISSN: 2045-2322

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy. This semi-automated, kit-free approach offers a versatile alternative to prevailing integrated solid-phase RNA extraction proprietary systems, with the added advantage of improved cost-effectiveness for high volume acquisition of quality RNA whether for use in clinical diagnoses or for diverse molecular applications.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00303005&limit=30&person=true