Imperial College London

ProfessorPaulFreemont

Faculty of MedicineDepartment of Infectious Disease

Chair in Protein Crystallography
 
 
 
//

Contact

 

+44 (0)20 7594 5327p.freemont

 
 
//

Location

 

259Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

325 results found

freemont P, Stach L, 2017, The AAA+ ATPase p97, a cellular multi-tool, Biochemical Journal, Vol: 474, Pages: 2953-2976, ISSN: 1470-8728

The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.

Journal article

Smith WD, Bardin E, Cameron L, Edmondson CL, Farrant KV, Martin I, Murphy RA, Soren O, Turnbull AR, Wierre-Gore N, Alton EW, Bundy JG, Bush A, Connett GJ, Faust SN, Filloux A, Freemont PS, Jones AL, Takats Z, Webb JS, Williams HD, Davies JCet al., 2017, Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis, FEMS Microbiology Letters, Vol: 364, ISSN: 0378-1097

Pseudomonas aeruginosa opportunistically infects the airways of patients with cystic fibrosis and causes significant morbidity and mortality. Initial infection can often be eradicated though requires prompt detection and adequate treatment. Intermittent and then chronic infection occurs in the majority of patients. Better detection of P. aeruginosa infection using biomarkers may enable more successful eradication before chronic infection is established. In chronic infection P. aeruginosa adapts to avoid immune clearance and resist antibiotics via efflux pumps, β-lactamase expression, reduced porins and switching to a biofilm lifestyle. The optimal treatment strategies for P. aeruginosa infection are still being established, and new antibiotic formulations such as liposomal amikacin, fosfomycin in combination with tobramycin and inhaled levofloxacin are being explored. Novel agents such as the alginate oligosaccharide OligoG, cysteamine, bacteriophage, nitric oxide, garlic oil and gallium may be useful as anti-pseudomonal strategies, and immunotherapy to prevent infection may have a role in the future. New treatments that target the primary defect in cystic fibrosis, recently licensed for use, have been associated with a fall in P. aeruginosa infection prevalence. Understanding the mechanisms for this could add further strategies for treating P. aeruginosa in future.

Journal article

Moore SJ, macdonald JT, freemont PS, 2017, Cell-free synthetic biology for in vitro prototype engineering, Biochemical Society Transactions, Vol: 45, Pages: 785-791, ISSN: 1470-8752

Cell-free transcription–translation is an expandingfield in synthetic biology as a rapidprototyping platform for blueprinting the design of synthetic biological devices. Exemplarefforts include translation of prototype designs into medical test kits for on-site identifica-tion of viruses (Zika and Ebola), while gene circuit cascades can be tested, debuggedand re-designed within rapid turnover times. Coupled with mathematical modelling, thisdiscipline lends itself towards the precision engineering of new synthetic life. The nextstages of cell-free look set to unlock new microbial hosts that remain slow to engineerand unsuited to rapid iterative design cycles. It is hoped that the development of suchsystems will provide new tools to aid the transition from cell-free prototype designs tofunctioning synthetic genetic circuits and engineered natural product pathways in livingcells.

Journal article

Goers L, Ainsworth C, Goey CH, Kontoravdi, Freemont PS, Polizzi KMet al., 2017, Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production, Biotechnology and Bioengineering, Vol: 114, Pages: 1290-1300, ISSN: 1097-0290

Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimise the productivity of these cultures it is important to monitor cellular metabolism, for example the utilisation of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalise on the wealth of genetic operons for metabolite sensing available in Nature for the development of other whole-cell biosensors.

Journal article

Freemont P, 2017, Synthesising Scientists, Biologist, Vol: 64, Pages: 22-25, ISSN: 0006-3347

This summer, thousands of high school students, undergraduates and academics from around the world will be engineering novel biological devices in preparation for the iGEM competition in Boston. The Biologist takes a look at what makes this competition so special.

Journal article

Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KMet al., 2017, Cover Image, Volume 114, Number 6, June 2017.

Cover Legend The cover image, by Lisa Goers et al., is based on the Article Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production, DOI: 10.1002/bit.26254.

Other

McClymont DW, Freemont PS, 2017, With all due respect to Maholo, lab automation isn't anthropomorphic, NATURE BIOTECHNOLOGY, Vol: 35, Pages: 312-314, ISSN: 1087-0156

Journal article

Moore SJ, Lai HE, Needham H, Polizzi KM, Freemont PSet al., 2017, Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool, Biotechnology Journal, Vol: 12, ISSN: 1860-7314

Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway.

Journal article

Webb AJ, Kelwick R, Freemont PS, 2017, Opportunities for applying whole-cell bioreporters towards parasite detection, Microbial Biotechnology, Vol: 10, Pages: 244-249, ISSN: 1751-7915

Journal article

Hazel P, Kroll SH, Bondke A, Barbazanges M, Patel H, Fuchter MJ, Coombes RC, Ali S, Barrett AG, Freemont PSet al., 2017, Inhibitor selectivity for cyclin-dependent kinase 7: a structural, thermodynamic, and modelling study, Chemmedchem, Vol: 12, Pages: 372-380, ISSN: 1860-7187

Deregulation of the cell cycle by mechanisms that lead to elevated activities of cyclin-dependent kinases (CDK) is a feature of many human diseases, cancer in particular. We identified small-molecule inhibitors that selectively inhibit CDK7, the kinase that phosphorylates cell-cycle CDKs to promote their activities. To investigate the selectivity of these inhibitors we used a combination of structural, biophysical, and modelling approaches. We determined the crystal structures of the CDK7-selective compounds ICEC0942 and ICEC0943 bound to CDK2, and used these to build models of inhibitor binding to CDK7. Molecular dynamics (MD) simulations of inhibitors bound to CDK2 and CDK7 generated possible models of inhibitor binding. To experimentally validate these models, we gathered isothermal titration calorimetry (ITC) binding data for recombinant wild-type and binding site mutants of CDK7 and CDK2. We identified specific residues of CDK7, notably Asp155, that are involved in determining inhibitor selectivity. Our MD simulations also show that the flexibility of the G-rich and activation loops of CDK7 is likely an important determinant of inhibitor specificity similar to CDK2.

Journal article

Moore SJ, lai H-E, Kelwick R, Mei S, Bell DJ, Polizzi K, Freemont PSet al., 2016, EcoFlex - a multifunctional MoClo kit for E. coli synthetic biology, ACS Synthetic Biology, Vol: 5, Pages: 1059-1069, ISSN: 2161-5063

Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimisation, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli, has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterise in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimise pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimisation. In summary, EcoFlex provides a standardised and multifunctional kit for a variety of applications in E. coli synthetic biology.

Journal article

MacDonald J, Freemont PS, 2016, Computational protein design with backbone plasticity, Biochemical Society Transactions, Vol: 44, Pages: 1523-1529, ISSN: 1470-8752

The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process.

Journal article

Kelwick RJR, Webb AJ, MacDonald JT, Freemont PSet al., 2016, Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements, Metabolic Engineering, Vol: 38, Pages: 370-381, ISSN: 1096-7184

Cell-free transcription-translation systems were originally applied towards in vitro protein production. More recently, synthetic biology is enabling these systems to be used within a systematic design context for prototyping DNA regulatory elements, genetic logic circuits and biosynthetic pathways. The Gram-positive soil bacterium, Bacillus subtilis, is an established model organism of industrial importance. To this end, we developed several B. subtilis-based cell-free systems. Our improved B. subtilis WB800N-based system was capable of producing 0.8 µM GFP, which gave a ~72x fold-improvement when compared with a B. subtilis 168 cell-free system. Our improved system was applied towards the prototyping of a B. subtilis promoter library in which we engineered several promoters, derived from the wild-type Pgrac (σA) promoter, that display a range of comparable in vitro and in vivo transcriptional activities. Additionally, we demonstrate the cell-free characterisation of an inducible expression system, and the activity of a model enzyme - renilla luciferase.

Journal article

MacDonald JT, Kabasakal BV, Godding D, Kraatz S, Henderson L, Barber J, Freemont PS, Murray JWet al., 2016, Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension, Proceedings of the National Academy of Sciences of the United States of America, Vol: 113, Pages: 10346-10351, ISSN: 1091-6490

The ability to design and construct structures with atomic level precisionis one of the key goals of nanotechnology. Proteins offer anattractive target for atomic design, as they can be synthesized chemicallyor biologically, and can self-assemble. However the generalizedprotein folding and design problem is unsolved. One approach tosimplifying the problem is to use a repetitive protein as a scaffold.Repeat proteins are intrinsically modular, and their folding and structuresare better understood than large globular domains. Here, wehave developed a new class of synthetic repeat protein, based onthe pentapeptide repeat family of beta-solenoid proteins. We haveconstructed length variants of the basic scaffold, and computationallydesigned de novo loops projecting from the scaffold core. Theexperimentally solved 3.56 ˚A resolution crystal structure of one designedloop matches closely the designed hairpin structure, showingthe computational design of a backbone extension onto a syntheticprotein core without the use of backbone fragments from knownstructures. Two other loop designs were not clearly resolved in thecrystal structures and one loop appeared to be in an incorrect conformation.We have also shown that the repeat unit can accommodatewhole domain insertions by inserting a domain into one of the designedloops.

Journal article

Schuster C, Bellows L, Tosi T, Campeotto, Corrigan, Freemont P, Grundling Aet al., 2016, The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus, Science Signaling, Vol: 9, Pages: ra81-ra81, ISSN: 1945-0877

Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. To survive an increase in osmolarity, bacteria immediately take up potassium ions and small organic compounds known as compatible solutes. The second messenger cyclic diadenosine monophosphate (c-di-AMP) reduces the ability of bacteria to withstand osmotic stress by binding to and inhibiting several proteins that promote potassium uptake. We identified OpuCA, the adenosine triphosphatase (ATPase) component of an uptake system for the compatible solute carnitine, as a c-di-AMP target protein in S. aureus and found that the LAC*ΔgdpP strain of S. aureus, which overproduces c-di-AMP, showed reduced carnitine uptake. The paired cystathionine-β-synthase (CBS) domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP inhibits osmoprotection through multiple mechanisms.

Journal article

Filloux A, Freemont P, 2016, Structural biology: baseplates in contractile machines, Nature Microbiology, Vol: 1, ISSN: 2058-5276

Journal article

Chambers S, Kitney R, Freemont P, 2016, The Foundry: the DNA synthesis and construction Foundry at Imperial College., Biochemical Society Transactions, Vol: 44, Pages: 687-688, ISSN: 1470-8752

The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms.

Journal article

Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont P, Kitney RI, Reeve B, Ellis Tet al., 2016, Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain, Proceedings of the National Academy of Sciences of the United States of America, Vol: 113, Pages: E3431-E3440, ISSN: 0027-8424

Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity and biocompatibility make it of great interest to materials science, however precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a new strain of Komagataeibacter rhaeticus (Komagataeibacter rhaeticus iGEM) that can produce cellulose at high yields, grow in low nitrogen conditions, and is highly resistant to toxic chemicals. We achieve external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering and biotechnology.

Journal article

Planamente S, Salih O, Manoli E, Albesa-Jove D, Freemont PS, Filloux AAMet al., 2016, TssA forms a gp6-like ring attached to the type VI secretion sheath, EMBO Journal, Vol: 35, Pages: 1613-1627, ISSN: 0261-4189

The type VI secretion system (T6SS) is a supra-molecular bacterial complex that resembles phage tails. It is a killing machine which fires toxins into target cells upon contraction of its TssBC sheath. Here, we show that TssA1 is a T6SS component forming dodecameric ring structures whose dimensions match those of the TssBC sheath and which can accommodate the inner Hcp tube. The TssA1 ring complex binds the T6SS sheath and impacts its behaviour in vivo. In the phage, the first disc of the gp18 sheath sits on a baseplate wherein gp6 is a dodecameric ring. We found remarkable sequence and structural similarities between TssA1 and gp6 C-termini, and propose that TssA1 could be a baseplate component of the T6SS. Furthermore, we identified similarities between TssK1 and gp8, the former interacting with TssA1 while the latter is found in the outer radius of the gp6 ring. These observations, combined with similarities between TssF and gp6N-terminus or TssG and gp53, lead us to propose a comparative model between the phage baseplate and the T6SS.

Journal article

Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, Wierre-Gore N, Alton EW, Bundy JG, Connett G, Faust SN, Filloux A, Freemont P, Jones A, Khoo V, Morales S, Murphy R, Pabary R, Simbo A, Schelenz S, Takats Z, Webb J, Williams HD, Davies JCet al., 2016, Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches, Expert Review of Respiratory Medicine, Vol: 10, Pages: 685-697, ISSN: 1747-6348

Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.

Journal article

Webb AJ, Kelwick R, Doenhoff MJ, Kylilis N, MacDonald J, Wen KY, Mckeown C, Baldwin G, Ellis T, Jensen K, Freemont PSet al., 2016, A protease-based biosensor for the detection of schistosome cercariae, Scientific Reports, Vol: 6, ISSN: 2045-2322

Parasitic diseases affect millions of people worldwide, causing debilitating illnesses anddeath. Rapid and cost-effective approaches to detect parasites are needed, especially inresource-limited settings. A common signature of parasitic diseases is the release of specificproteases by the parasites at multiple stages during their life cycles. To this end, weengineered several modular Escherichia coli and Bacillus subtilis whole-cell-basedbiosensors which incorporate an interchangeable protease recognition motif into theirdesigns. Herein, we describe how several of our engineered biosensors have been applied todetect the presence and activity of elastase, an enzyme released by the cercarial larvae stageof Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes areresponsible for the infection of an estimated 200 million people worldwide. Since ourbiosensors are maintained in lyophilised cells, they could be applied for the detection of S.mansoni and other parasites in settings without reliable cold chain access.

Journal article

Florea M, Reeve B, Abbott J, Freemont PS, Ellis Tet al., 2016, Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582., Scientific Reports, Vol: 6, ISSN: 2045-2322

Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

Journal article

Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn Aet al., 2016, Delineation of metabolic gene clusters in plant genomes by chromatin signatures., Nucleic Acids Research, Vol: 44, Pages: 2255-2265, ISSN: 1362-4962

Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.

Journal article

Kelwick R, Webb AJ, Macdonald JT, Freemont PSet al., 2016, Development of a bacillus subtilis cell-free transcriptiontranslation system

Conference paper

Polizzi KM, Freemont PS, 2016, Synthetic biology biosensors for healthcare and industrial biotechnology applications

Conference paper

Trusch F, Matena A, Vuk M, Koerver L, Knaevelsrud H, Freemont PS, Meyer H, Bayer Pet al., 2015, The N-terminal region of the ubiquitin regulatory x (UBX) domain-containing Protein 1 (UBXD1) modulates interdomain communication within the valosin-containing Protein p97, Journal of Biological Chemistry, Vol: 290, Pages: 29414-29427, ISSN: 1083-351X

Journal article

Kopniczky M, freemont P, moore S, 2015, Multilevel regulation and translational switches in synthetic biology, IEEE Transactions on Biomedical Circuits and Systems, ISSN: 1940-9990

Journal article

Kopniczky M, moore S, freemont P, 2015, Multilevel regulation and translational switches in synthetic biology, IEEE Transactions on Biomedical Circuits and Systems, Vol: 9, Pages: 485-496, ISSN: 1940-9990

In contrast to the versatility of regulatory mechanisms in natural systems, synthetic genetic circuits have been so far predominantly composed of transcriptionally regulated modules. This is about to change as the repertoire of foundational tools for post-transcriptional regulation is quickly expanding. We provide an overview of the different types of translational regulators: protein, small molecule and RNA responsive and we describe the new emerging circuit designs utilizing these tools. There are several advantages of achieving multilevel regulation via translational switches and it is likely that such designs will have the greatest and earliest impact in mammalian synthetic biology for regenerative medicine and gene therapy applications.

Journal article

Kopniczky M, freemont P, Moore S, 2015, Multilevel regulation and translational switches in synthetic biology, IEEE Transactions on Biomedical Circuits and Systems, ISSN: 1940-9990

In contrast to the versatility of regulatory mechanisms in natural systems, synthetic genetic circuits have been so far predominantly composed of transcriptionally regulated modules. This is about to change as the repertoire of foundational tools for post-transcriptional regulation is quickly expanding. We provide an overview of the different types of translational regulators: protein, small molecule and RNA responsive and we describe the new emerging circuit designs utilizing these tools. There are several advantages of achieving multilevel regulation via translational switches and it is likely that such designs will have the greatest and earliest impact in mammalian synthetic biology for regenerative medicine and gene therapy applications.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00303005&limit=30&person=true&page=4&respub-action=search.html