Imperial College London

Professor Peter Haynes

Central FacultyOffice of the Provost

Vice-Provost (Education and Student Experience)
 
 
 
//

Contact

 

p.haynes Website

 
 
//

Assistant

 

Mrs Anushka Patel +44 (0)20 7594 6070

 
//

Location

 

409Faculty BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

79 results found

von Alfthan S, Haynes PD, Kaski K, Sutton APet al., 2006, Are the structures of twist grain boundaries in silicon ordered at 0 K?, PHYS REV LETT, Vol: 96, ISSN: 0031-9007

Contrary to previous simulation results on the existence of amorphous intergranular films at high-angle twist grain boundaries (GBs) in elemental solids such as silicon, recent experimental results imply structural order in some high-angle boundaries. With a novel protocol for simulating twist GBs, which allows the number of atoms at the boundary to vary, we have found new low-energy ordered structures. We give a detailed exposition of the results for the simplest boundary. The validity of our results is confirmed by first-principles calculations.

Journal article

Haynes PD, Mostofi AA, Skylaris CK, Payne MCet al., 2006, ONETEP: linear-scaling density-functional theory with plane-waves, EMAG/NANO Conference on Imaging, Analysis and Fabrication on the Nanoscale, Publisher: IOP PUBLISHING LTD, Pages: 143-148, ISSN: 1742-6588

This paper provides a general overview of the methodology implemented in ONETEP (Order-N Electronic Total Energy Package), a parallel density-functional theory code for large-scale first-principles quantum-mechanical calculations. The distinctive features of ONETEP are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of ONETEP.

Conference paper

Skylaris CK, Haynes PD, Mostofi AA, Payne MCet al., 2005, Using ONETEP for accurate and efficient <i>O</i>(<i>N</i>) density functional calculations, JOURNAL OF PHYSICS-CONDENSED MATTER, Vol: 17, Pages: 5757-5769, ISSN: 0953-8984

Journal article

Skylaris CK, Haynes PD, Mostofi AA, Payne MCet al., 2005, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers, JOURNAL OF CHEMICAL PHYSICS, Vol: 122, ISSN: 0021-9606

Journal article

Artacho E, Rohlfing M, Côté M, Haynes PD, Needs RJ, Molteni Cet al., 2004, Structural relaxations in electronically excited poly(<i>para</i>-phenylene) -: art. no. 116401, PHYSICAL REVIEW LETTERS, Vol: 93, ISSN: 0031-9007

Journal article

Mostofi AA, Haynes PD, Skylaris CK, Payne MCet al., 2003, Preconditioned iterative minimization for linear-scaling electronic structure calculations, JOURNAL OF CHEMICAL PHYSICS, Vol: 119, Pages: 8842-8848, ISSN: 0021-9606

Journal article

Côté M, Haynes PD, Molteni C, 2002, Material design from first principles the case of boron nitride polymers, JOURNAL OF PHYSICS-CONDENSED MATTER, Vol: 14, Pages: 9997-10009, ISSN: 0953-8984

Journal article

Mostofi AA, Skylaris CK, Haynes PD, Payne MCet al., 2002, Total-energy calculations on a real space grid with localized functions and a plane-wave basis, COMPUTER PHYSICS COMMUNICATIONS, Vol: 147, Pages: 788-802, ISSN: 0010-4655

Journal article

Skylaris CK, Diéguez O, Haynes PD, Payne MCet al., 2002, Comparison of variational real-space representations of the kinetic energy operator -: art. no. 073103, PHYSICAL REVIEW B, Vol: 66, ISSN: 2469-9950

Journal article

Skylaris CK, Mostofi AA, Haynes PD, Diéguez O, Payne MCet al., 2002, Nonorthogonal generalized Wannier function pseudopotential plane-wave method -: art. no. 035119, PHYSICAL REVIEW B, Vol: 66, ISSN: 2469-9950

Journal article

Skylaris CK, Mostofi AA, Haynes PD, Pickard CJ, Payne MCet al., 2001, Accurate kinetic energy evaluation in electronic structure calculations with localized functions on real space grids, COMPUTER PHYSICS COMMUNICATIONS, Vol: 140, Pages: 315-322, ISSN: 0010-4655

Journal article

Gan CK, Haynes PD, Payne MC, 2001, First-principles density-functional calculations using localized spherical-wave basis sets, PHYS REV B, Vol: 63, ISSN: 0163-1829

We present a detailed study of the use of localized spherical-wave basis sets, first introduced in the context of lineal scaling, in first-principles density-functional calculations. Several parameters that control the completeness of this basis set are fully investigated on systems such as molecules and bulk crystalline silicon. We find that the results are in good agreement with those obtained using the extended plane-wave basis set. Since the spherical-wave basis set is accurate, easy to handle, relatively small, and can be systematically improved, we expect it to be of use in other applications.

Journal article

Cote M, Haynes PD, Molteni C, 2001, Boron nitride polymers: Building blocks for organic electronic devices, PHYS REV B, Vol: 63, Pages: art. no.-125207, ISSN: 1098-0121

Modern electronic devices an increasingly being designed by combining materials with different electronic properties. The conventional semiconductor industry has achieved this by building heterostructures, such as quantum wells and superlattices, from materials with the same crystal structure but different constituent atoms. We propose that boron nitride polymers, with the same structure as organic polymers, will allow the same idea to be applied to polymer materials, already recognized as a cheap alternative to inorganic semiconductors. We demonstrate the similarity between organic polymers and their boron nitride analogues and then explore the potential innovations, including band gap tuning, that these new polymers could bring to organic polymer research.

Journal article

Gan CK, Haynes PD, Payne MC, 2001, Preconditioned conjugate gradient method for the sparse generalized eigenvalue problem in electronic structure calculations, COMPUTER PHYSICS COMMUNICATIONS, Vol: 134, Pages: 33-40, ISSN: 0010-4655

Journal article

Haynes PD, Côté M, 2000, Parallel fast Fourier transforms for electronic structure calculations, COMPUTER PHYSICS COMMUNICATIONS, Vol: 130, Pages: 130-136, ISSN: 0010-4655

Journal article

Haynes PD, Payne MC, 2000, An ab initio linear-scaling scheme, MOLECULAR SIMULATION, Vol: 25, Pages: 257-264

In this paper we briefly survey the current state of ab initio calculations in terms of the accuracy and range of applicability of these methods for studying complex processes in real materials. We highlight some of the successes and limitations of these techniques and discuss the extent to which linear-scaling methods are able to extend the scope and scale of ab initio calculations. We argue that a combination of linear-scaling methods and hybrid modelling schemes is required to overcome many of the difficulties currently faced by conventional schemes, and present our own contributions towards the development of a robust and reliable linear-scaling method.

Journal article

Haynes PD, Payne MC, 1999, Corrected penalty-functional method for linear-scaling calculations within density-functional theory, PHYS REV B, Vol: 59, Pages: 12173-12176, ISSN: 0163-1829

We present a method for the calculation of ground-state total energies within density-functional theory, based upon the single-particle density-matrix formulation, which requires a computational effort which scales only linearly with system size. The difficult idempotency constraint is imposed approximately using a penalty functional constructed to allow efficient minimization. The resulting error in the total energy due to the violation of idempotency is removed by an analytic correction. The results for a system comprising 216 atoms of crystalline silicon are compared with those from a standard plane-wave code. Linear scaling to 512 atoms is also demonstrated on a workstation. [S0163-1829(99)10519-8].

Journal article

Haynes PD, Payne MC, 1998, Failure of density-matrix minimization methods for linear-scaling density-functional theory using the Kohn penalty-functional, SOLID STATE COMMUNICATIONS, Vol: 108, Pages: 737-741, ISSN: 0038-1098

Journal article

Haynes PD, Payne MC, 1997, Localised spherical-wave basis set for O(N) total-energy pseudopotential calculations, COMPUTER PHYSICS COMMUNICATIONS, Vol: 102, Pages: 17-27, ISSN: 0010-4655

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00521770&person=true&page=3&respub-action=search.html