Imperial College London

ProfessorPeterKohl

Faculty of MedicineNational Heart & Lung Institute

Visiting Professor
 
 
 
//

Contact

 

p.kohl Website

 
 
//

Location

 

Heart Science CentreHarefield Hospital

//

Summary

 

Summary

Until 2017, Peter Kohl held the Chair in Cardiac Biophysics and Systems Biology at NHLI. Having relocated to Germany, to set up the new institute for Experimental Cardiovascular Medicine at the University of Freiburg, he is now a Visiting Professor at NHLI.

Peter studied Medicine and Biophysics at the Moscow Pirogov Institute (1981-1987) and, after post-graduate training and research at the Berlin Charité (PhD 1990, Facharzt 1991), he joined the Cardiac Electrophysiology Chair of Professor Denis Noble at Oxford (1992). In 1998, Peter set up the Oxford Cardiac Mechano-Electric Feedback lab, initially as a Royal Society Research Fellow, and subsequently as a Senior Fellow of the British Heart Foundation. While at Oxford, he held a Research Fellowship at Keble College (2002-2004) and was the Tutorial Fellow in Biomedical Sciences at Balliol (2004-2010).

Peter’s team enjoys a strong international reputation in cardiac mechano-electrical interaction studies, in particular as a result of their ability to cross traditional boundaries between fields (engineering, biophysics, biology, computing) and levels (ion channel to whole organ) of investigation. Building on a solid track-record in the development and application of novel techniques, they combine experiment and computation to integrate cardiac structure-function data to address clinically-relevant research targets. The group maintains close links with leading experimental and modelling teams in the UK and elsewhere, including Auckland, Baltimore, Boulder, Ekaterinburg, Heidelberg and Okayama.

Peter directs a significant portfolio of externally-funded research (supported by ERC, BBSRC, EPSRC, BHF, and EC), and has been a driver of international collaboration actions, such as the Network of Excellence for the EU Virtual Physiological Human Initiative whose founding director he was. He serves on editorial boards and as a reviewer for international journals and funding bodies. Peter is the coordinating editor of the primary textbook on Cardiac Mechano-Electric Coupling and Arrhythmias, and chairman of the leading international workshop series on the same topic.

For more detail, please see Peter's Inaugural Lecture at Imperial College, and recent News items.

NHLI-Based TEAM MEMBERS


Dr Remi Peyronnet, MYI Research Associate (PT)
r.peyronnet@imperial.ac.uk

Dr Eva Rog-Zielinska, BHF Immediate Post-doc Fellow
e.rog-zielinska@imperial.ac.uk


SELECTED publications:

Selected publications (for full list see here ):

Hulsmans M, Clauss S, Xiao L et al. Macrophages facilitate electrical conduction in the heartCell 2017/169:510-522.

Scardigli M, Crocini C, Ferrantini C et al. Quantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP microscopy. Proc Natl Acad Sci USA 2017/114:5737-5742.

Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O'Toole ET, Knöpfel T & Kohl P. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci USA 2017:113:4852–14857.

Gourdie RG, Dimmeler S & Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nature Reviews Drug Discovery 2016/15: 620–638.

Brandenburg S, Kohl T, Williams G et al. Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 2016/126:3999–4015

Peyronnet R, Nerbonne JM & Kohl P. Cardiac mechano-gated ion channels and arrhythmias. Circ Res 2016/118 (2), 311-329

EA Rog-Zielinska, RA Norris, P Kohl & R Markwald. The living scar - cardiac fibroblasts and the injured heart. Trends Mol Med 2016/22:99-114.

Kohl P & Gourdie RG. Fibroblast-myocyte electrotonic coupling: Does it occur in native cardiac tissue? J Mol Cell Cardiol 2014/70:37-46.

Botcherby et al. Fast measurement of sarcomere length and cell orientation in Langendorff-perfused hearts using remote focusing microscopy. Circ Res 2013/113:863-70.

Yan et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci USA 2012/109:20443-8.

Lee et al. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res 2012/110:1556-63.

Bub et al. Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging. Nat Methods 2010/7:209-11.

Rodriguez et al. The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Ther 2010/88:130-4.

Iribe et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 2009/104:787-95.

Pellis et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: a prospective study. Resuscitation 2009/80:17-23.

Nesbitt et al. Rediscovering commotio cordis. The Lancet 2001/357:1195-7.

Kohl & Noble. Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovasc Res 1996/32:62-8.

Publications

Journals

Aston D, Capel RA, Ford KL, et al., 2017, High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart, Scientific Reports, Vol:7, ISSN:2045-2322

Bates J, Teh I, McClymont D, et al., 2017, Monte Carlo Simulations of Diffusion Weighted MRI in Myocardium: Validation and Sensitivity Analysis, Ieee Transactions on Medical Imaging, Vol:36, ISSN:0278-0062, Pages:1316-1325

Burton RAB, Rog-Zielinska EA, Corbett AD, et al., 2017, Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation., Biophys J, Vol:113, Pages:1047-1059

Casero R, Siedlecka U, Jones ES, et al., 2017, Transformation diffusion reconstruction of three-dimensional histology volumes from two-dimensional image stacks, Medical Image Analysis, Vol:38, ISSN:1361-8415, Pages:184-204

Decher N, Ortiz-Bonnin B, Friedrich C, et al., 2017, Sodium permeable and "hypersensitive" TREK-1 channels cause ventricular tachycardia, Embo Molecular Medicine, Vol:9, ISSN:1757-4676, Pages:403-414

More Publications