Imperial College London

Dr Periklis (Laki) Pantazis

Faculty of EngineeringDepartment of Bioengineering

Reader in Advanced Optical Precision Imaging
 
 
 
//

Contact

 

+44 (0)20 7594 6367p.pantazis Website CV

 
 
//

Location

 

3.14Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

71 results found

Kalyviotis K, Pantazis P, 2023, Primed conversion: The emerging player of precise and nontoxic photoconversion., J Microsc

In 2015, we reported primed conversion, a novel way to convert green-to-red photoconvertible fluorescent proteins, which emerges as a powerful tool for precision optical imaging. Primed conversion uses the intercept of blue and red-to-far-red light instead of traditional violet or near-UV light illumination which offers a series of advantages. Here, we review the fundamental principles and applications of primed conversion with a focus on its use in single-cell labelling and lineage tracing. We provide a historical perspective of lineage tracing techniques, thereby covering basic principles of fluorescence, photoconvertible fluorescent proteins, and eventually primed conversion. We then present the molecular requirements for primed conversion to take place and showcase how it can be used for dual-colour high-fidelity lineage tracing. Further, we discuss potential future developments of the primed conversion imaging toolkit that can benefit the study of both development and disease progression.

Journal article

Yaganoglu S, Kalyviotis K, Vagena-Pantoula C, Juelich D, Gaub BM, Welling M, Lopes T, Lachowski D, Tang SS, Hernandez ADR, Salem V, Mueller DJ, Holley SA, Vermot J, Shi J, Helassa N, Toeroek K, Pantazis Pet al., 2023, Author Correction: Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi, Nature Communications, Vol: 14, ISSN: 2041-1723

Journal article

Pantazis P, Pantazis P, Yaganoglu S, Konstantinos K, Vagena-Pantoula C, Julich D, Gaub B, Welling M, Lopes T, Lachowski D, Tang SS, Del Rio Hernandez A, Salem V, Muller D, Holley S, Vermot J, Shi J, Helassa N, Török Ket al., 2023, Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi, Nature Communications, Vol: 14, Pages: 1-16, ISSN: 2041-1723

Mechanosensing is a ubiquitous process to translate external mechanical stimuliinto biological responses. Piezo1 ion channels are directly gated by mechanical forces and playan essential role in cellular mechanotransduction. However, readouts of Piezo1 activity aremainly examined by invasive or indirect techniques, such as electrophysiological analyses andcytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescentreporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate thatGenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-celllevel to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in theplasma membrane of single cells, resolves repetitive contraction-triggered stimulation ofbeating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring ofPiezo1 activity in mechanochemical feedback loops during development, homeostaticregulation, and disease.

Journal article

Fang C, Drobizhev M, Ng HL, Pantazis Pet al., 2021, Editorial: mechanisms of fluorescent proteins, Frontiers in Molecular Biosciences, Vol: 8, Pages: 1-3, ISSN: 2296-889X

Journal article

Sonay AY, Kalyviotis K, Yaganoglu S, Unsal A, Konantz M, Teulon C, Lieberwirth I, Sieber S, Jiang S, Behzadi S, Crespy D, Landfester K, Roke S, Lengerke C, Pantazis Pet al., 2021, Biodegradable harmonophores for targeted high-resolution in vivo tumor imaging, ACS Nano, Vol: 15, Pages: 4144-4154, ISSN: 1936-0851

Optical imaging probes have played a major role in detecting and monitoring a variety of diseases. In particular, nonlinear optical imaging probes, such as second harmonic generating (SHG) nanoprobes, hold great promise as clinical contrast agents, as they can be imaged with little background signal and unmatched long-term photostability. As their chemical composition often includes transition metals, the use of inorganic SHG nanoprobes can raise long-term health concerns. Ideally, contrast agents for biomedical applications should be degraded in vivo without any long-term toxicological consequences to the organism. Here, we developed biodegradable harmonophores (bioharmonophores) that consist of polymer-encapsulated, self-assembling peptides that generate a strong SHG signal. When functionalized with tumor cell surface markers, these reporters can target single cancer cells with high detection sensitivity in zebrafish embryos in vivo. Thus, bioharmonophores will enable an innovative approach to cancer treatment using targeted high-resolution optical imaging for diagnostics and therapy.

Journal article

Welling M, Kalyviotis K, Pantazis P, 2020, Primed track: reliable volumetric single-cell tracking and lineage tracing of living specimen with dual-labeling approaches, Bio-protocol, Vol: 10, Pages: 1-10, ISSN: 2331-8325

Mammalian embryonic development starts with a single fertilized zygote that develops into a blastocyst embryo consisting of three cell types that evolve into either embryonic or extra-embryonic tissues. Lineage tracing of these cells can provide important information about the molecular and cellular dynamics contributing to fate allocation during early development. While global labeling techniques allow for visualization of all cells at the same time, lineage tracing of cells over several divisions can become complicated due to embryo movement and rotation as well as increasing cell densities. Here, we use green-to-red photoconvertible proteins for both global and sparse labeling of cells of interest in the developing murine embryo. We use primed conversion to achieve precise photoconversion of single nuclei in 4-cell stage embryos followed by volumetric live imaging to capture development up to the blastocyst stage. We developed an image analysis pipeline, called primed Track, that uses the dual labeling strategy for both straightforward segmentation and registration of all cells in the embryo as well as correction of rotational and spatial drift. Together, this strategy allows for reliable and fast tracking and lineage tracing of individual cells, even over increased imaging time intervals that result in a major reduction in data volume, all essential conditions for volumetric long-term imaging techniques

Journal article

Malkinson G, Mahou P, Chaudan E, Gacoin T, Sonay AY, Pantazis P, Beaurepaire E, Supatto Wet al., 2020, Fast in vivo imaging of SHG nanoprobes with multiphoton light-sheet microscopy, ACS Photonics, Vol: 7, Pages: 1036-1049, ISSN: 2330-4022

Two-photon light-sheet microscopy (2P-SPIM) provides a unique combination of advantages for fast and deep fluorescence imaging in live tissues. Detecting coherent signals such as second-harmonic generation (SHG) in 2P-SPIM in addition to fluorescence would open further imaging opportunities. However, light-sheet microscopy involves an orthogonal configuration of illumination and detection that questions the ability to detect coherent signals. Indeed, coherent scattering from micron-sized structures occurs predominantly along the illumination beam. By contrast, point-like sources such as SHG nanocrystals can efficiently scatter light in multiple directions and be detected using the orthogonal geometry of a light-sheet microscope. This study investigates the suitability of SHG light-sheet microscopy (SHG-SPIM) for fast imaging of SHG nanoprobes. Parameters that govern the detection efficiency of KTiOPO4 and BaTiO3 nanocrystals using SHG-SPIM are investigated theoretically and experimentally. The effects of incident polarization, detection numerical aperture, nanocrystal rotational motion, and second-order susceptibility tensor symmetries on the detectability of SHG nanoprobes in this specific geometry are clarified. Guidelines for optimizing SHG-SPIM imaging are established, enabling fast in vivo light-sheet imaging combining SHG and two-photon excited fluorescence. Finally, microangiography was achieved in live zebrafish embryos by SHG imaging at up to 180 frames per second and single-particle tracking of SHG nanoprobes in the blood flow.

Journal article

Kalyviotis K, Qin H, Pantazis P, 2020, Chapter 19 - PhOTO zebrafish and primed conversion: advancing the mechanistic view of development and disease, Behavioral and Neural Genetics of Zebrafish, Editors: Gerlai, Publisher: Academic Press, Pages: 309-322

A set of transgenic zebrafish lines, called PhOTO (Photoconvertible Optical Tracking Of…), were previously introduced and have wide applicability for accurate cell tracking during highly dynamic events, including embryo development, tissue regeneration, and cancer/disease progression. Cell shapes, interactions, divisions, and dynamics can be monitored by employing the photoconvertible fluorescent protein Dendra2 and the blue fluorescent protein Cerulean as compartment-specific labels of the nucleus and the plasma membrane. The combination of PhOTO zebrafish with confined primed conversion, a recently introduced axially confined photoconversion method, enables nontoxic, instantaneous, and precise cell tracking during any stage of the life cycle of zebrafish. The implementation of advanced imaging platforms and smart bioimaging software to perform high-fidelity lineage tracing of primed converted PhOTO zebrafish will greatly benefit the goal of acquiring a refined mechanistic view of development and disease.

Book chapter

Malkinson G, Maioli V, Boniface A, Mahou P, Ortas JF, Abdeladim L, Chaudan É, Sonay AY, Gacoin T, Pantazis P, Beaurepaire E, Supatto Wet al., 2020, Advances in fast multiphoton microscopy using light-sheet illumination

We report on recent advances in multiphoton light-sheet microscopy to perform fast multimodal imaging combining fluorescence with second-harmonic generation and to mitigate photodamage during in vivo imaging of embryos.

Conference paper

Yaganoglu S, Helassa N, Gaub BM, Welling M, Shi J, Müller DJ, Török K, Pantazis Pet al., 2019, GenEPi: Piezo1-based fluorescent reporter for visualizing mechanical stimuli with high spatiotemporal resolution

<jats:title>Abstract</jats:title><jats:p>Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses during development, homeostasis, and disease. However, non-invasive investigation of cellular mechanosensing in complex and intact live tissue remains challenging. Here, we developed GenEPi, a genetically-encoded fluorescent intensiometric reporter for mechanical stimuli based on Piezo1, an essential mechanosensitive ion channel found in vertebrates. We show that GenEPi has high specificity and spatiotemporal resolution for Piezo1-dependent mechanical stimuli, exemplified by resolving repetitive mechanical stimuli of spontaneously contracting cardiomyocytes within microtissues, in a non-invasive manner.</jats:p>

Journal article

Welling M, Mohr MA, Ponti A, Sabater LR, Boni A, Kawamura YK, Liberali P, Peters AHFM, Pelczar P, Pantazis Pet al., 2019, Primed Track, high-fidelity lineage tracing in mouse pre-implantation embryos using primed conversion of photoconvertible proteins, eLife, Vol: 8, Pages: 1-13, ISSN: 2050-084X

Accurate lineage reconstruction of mammalian pre-implantation development isessential for inferring the earliest cell fate decisions. Lineage tracing using global fluorescencelabeling techniques is complicated by increasing cell density and rapid embryo rotation, whichhampers automatic alignment and accurate cell tracking of obtained four-dimensional imaging datasets. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (prpcFPs) to simultaneously visualize the global green and the photoconverted red population in orderto minimize tracking uncertainties over prolonged time windows. Confined primed conversion ofH2B-pr-mEosFP-labeled nuclei combined with light-sheet imaging greatly facilitates segmentation,classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Usinggreen and red labels as fiducial markers, we computationally correct for rotational and translationaldrift, reduce overall data size, and accomplish high-fidelity lineage tracing even for increasedimaging time intervals – addressing major concerns in the field of volumetric embryo imaging.

Journal article

Slenders E, Boye H, Urbain M, Mugnier Y, Sonay AY, Pantazis P, Bonacina L, Berghe PV, vandeVen M, Ameloot Met al., 2018, Image Correlation Spectroscopy with Second Harmonic Generating Nanoparticles in Suspension and in Cells, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, Vol: 9, Pages: 6112-6118, ISSN: 1948-7185

Journal article

Welling M, Mohr M, Ponti A, Sabater L, Boni A, Liberali P, Pelczar P, Pantazis Pet al., 2018, High fidelity lineage tracing in mouse pre-implantation embryos using primed conversion of photoconvertible proteins

Accurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions of mammalian development. Lineage tracing using global labeling techniques is complicated by increasing cell density and rapid embryo rotation, impeding automatic alignment and rendering accurate cell tracking of obtained four-dimensional imaging data sets highly challenging. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift and accomplish high fidelity lineage tracing combined with a reduced data size – addressing majors concerns in the field of volumetric embryo imaging.

Working paper

Mohr MA, Pantazis P, 2018, Frontispiece: Primed Conversion: The New Kid on the Block for Photoconversion, Chemistry – A European Journal, Vol: 24, ISSN: 0947-6539

Journal article

Mohr MA, Pantazis P, 2018, Primed Conversion: The New Kid on the Block for Photoconversion, CHEMISTRY-A EUROPEAN JOURNAL, Vol: 24, Pages: 8268-+, ISSN: 0947-6539

Journal article

Sugiyama N, Sonay AY, Tussiwand R, Cohen BE, Pantazis Pet al., 2018, Effective Labeling of Primary Somatic Stem Cells with BaTiO3 Nanocrystals for Second Harmonic Generation Imaging, Small, Vol: 14, Pages: 1-9, ISSN: 1613-6810

While nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long‐term tracking. Here, the use of second‐harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported. Their long‐term photostability enables to investigate quantitatively at the single cell level their cellular fate in hematopoietic stem cells (HSCs) using both multiphoton and electron microscopy. It is found that the concentration of nanocrystals in proliferative multipotent progenitors is over 2.5‐fold greater compared to quiescent stem cells; this difference vanishes when HSCs enter a nonquiescent, proliferative state, while their potency remains unaffected. Understanding the nanoparticle stem cell interaction allows to establish an effective and safe nanoparticle labeling strategy into somatic stem cells that can critically contribute to an understanding of their in vivo therapeutic potential.

Journal article

Nienhaus K, Mohr MA, Kobitski AY, Sabater LR, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis Pet al., 2018, Primed Green-to-Red Photoconversion of Fluorescent Proteins Occurs via a Triplet State, 62nd Annual Meeting of the Biophysical-Society, Publisher: CELL PRESS, Pages: 533A-533A, ISSN: 0006-3495

Conference paper

Nugraha B, Mohr MA, Ponti A, Emmert MY, Weibel F, Hoerstrup SP, Moll S, Certa U, Prunotto M, Pantazis Pet al., 2017, Monitoring and manipulating cellular crosstalk during kidney fibrosis inside a 3D in vitro co-culture, Scientific Reports, Vol: 7, Pages: 1-11, ISSN: 2045-2322

In pharmacological research the development of promising lead compounds requires a detailed understanding of the dynamics of disease progression. However, for many diseases, such as kidney fibrosis, gaining such understanding requires complex real-time, multi-dimensional analysis of diseased and healthy tissue. To allow for such studies with increased throughput we established a dextran hydrogel-based in vitro 3D co-culture as a disease model for kidney fibrosis aimed at the discovery of compounds modulating the epithelial/mesenchymal crosstalk. This platform mimics a simplified pathological renal microenvironment at the interface between tubular epithelial cells and surrounding quiescent fibroblasts. We combined this 3D technology with epithelial reporter cell lines expressing fluorescent biomarkers in order to visualize pathophysiological cell state changes resulting from toxin-mediated chemical injury. Epithelial cell damage onset was robustly detected by image-based monitoring, and injured epithelial spheroids induced myofibroblast differentiation of co-cultured quiescent human fibroblasts. The presented 3D co-culture system therefore provides a unique model system for screening of novel therapeutic molecules capable to interfere and modulate the dialogue between epithelial and mesenchymal cells.

Journal article

Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis Pet al., 2017, Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Vol: 56, Pages: 11628-11633, ISSN: 1433-7851

Journal article

Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD, Hoi H, Yaganoglu S, Mohr MA, Kitova EN, Klassen JS, Pantazis P, Thompson RJ, Campbell REet al., 2017, Optogenetic control with a photocleavable protein, PhoCl, Nature Methods, Vol: 14, Pages: 391-394, ISSN: 1548-7091

To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.

Journal article

Sonay AY, Pantazis P, 2017, Bioinspired Second Harmonic Generation, Conference on Clinical and Preclinical Optical Diagnostics, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

Mohr MA, Argast P, Pantazis P, 2016, Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins, NATURE PROTOCOLS, Vol: 11, Pages: 2419-2431, ISSN: 1754-2189

Journal article

Welling M, Ponti A, Pantazis P, 2016, Symmetry breaking in the early mammalian embryo: the case for quantitative single-cell imaging analysis, MOLECULAR HUMAN REPRODUCTION, Vol: 22, Pages: 172-181

Journal article

Mohr MA, Pantazis P, 2016, Single neuron morphology in vivo with confined primed conversion, ZEBRAFISH: CELLULAR AND DEVELOPMENTAL BIOLOGY, PT A: CELLULAR BIOLOGY, 4TH EDITION, Editors: Detrich, Westerfield, Zon, Publisher: ELSEVIER ACADEMIC PRESS INC, Pages: 125-138, ISBN: 978-0-12-803475-0

Book chapter

Dempsey WP, Hodas NO, Ponti A, Pantazis Pet al., 2015, Determination of the source of SHG verniers in zebrafish skeletal muscle, SCIENTIFIC REPORTS, Vol: 5, ISSN: 2045-2322

SHG microscopy is an emerging microscopic technique for medically relevant imaging because certain endogenous proteins, such as muscle myosin lattices within muscle cells, are sufficiently spatially ordered to generate detectable SHG without the use of any fluorescent dye. Given that SHG signal is sensitive to the structural state of muscle sarcomeres, SHG functional imaging can give insight into the integrity of muscle cells in vivo. Here, we report a thorough theoretical and experimental characterization of myosin-derived SHG intensity profiles within intact zebrafish skeletal muscle. We determined that “SHG vernier” patterns, regions of bifurcated SHG intensity, are illusory when sarcomeres are staggered with respect to one another. These optical artifacts arise due to the phase coherence of SHG signal generation and the Guoy phase shift of the laser at the focus. In contrast, two-photon excited fluorescence images obtained from fluorescently labeled sarcomeric components do not contain such illusory structures, regardless of the orientation of adjacent myofibers. Based on our results, we assert that complex optical artifacts such as SHG verniers should be taken into account when applying functional SHG imaging as a diagnostic readout for pathological muscle conditions.

Journal article

Dempsey WP, Georgieva L, Helbling PM, Sonay AY, Truong TV, Haffner M, Pantazis Pet al., 2015, In vivo single-cell labeling by confined primed conversion, Nature Methods, Vol: 12, Pages: 645-648, ISSN: 1548-7091

Spatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.

Journal article

Pantazis P, Supatto W, 2014, Advances in whole-embryo imaging: a quantitative transition is underway, NATURE REVIEWS MOLECULAR CELL BIOLOGY, Vol: 15, Pages: 327-339, ISSN: 1471-0072

Journal article

Dempsey WP, Qin H, Pantazis P, 2014, In Vivo Cell Tracking Using PhOTO Zebrafish, PHOTOSWITCHING PROTEINS: METHODS AND PROTOCOLS, Vol: 1148, Pages: 217-228, ISSN: 1064-3745

Journal article

Mikut R, Dickmeis T, Driever W, Geurts P, Hamprecht FA, Kausler BX, Ledesma-Carbayo MJ, Maree R, Mikula K, Pantazis P, Ronneberger O, Santos A, Stotzka R, Straehle U, Peyrieras Net al., 2013, Automated Processing of Zebrafish Imaging Data: A Survey, ZEBRAFISH, Vol: 10, Pages: 401-421, ISSN: 1545-8547

Journal article

Culic-Viskota J, Dempsey WP, Fraser SE, Pantazis Pet al., 2012, Surface functionalization of barium titanate SHG nanoprobes for <i>in vivo</i> imaging in zebrafish, NATURE PROTOCOLS, Vol: 7, Pages: 1618-1633, ISSN: 1754-2189

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00989974&limit=30&person=true