Imperial College London

DrPaulHooper

Faculty of EngineeringDepartment of Mechanical Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 7128paul.hooper Website CV

 
 
//

Location

 

456ACity and Guilds BuildingSouth Kensington Campus

//

Summary

 

Additive Manufacturing

Additive manufacturing (AM) technology has a promising list of potential benefits for low to medium volume manufacture. However, AM is in the process of transitioning from its rapid prototyping past into a technology that can be used to produce parts for high performance and safety critical applications. We are addressing this by developing a detailed scientific understanding of the processes and materials produced and embedding this knowledge into predictive modelling and simulation tools.

Process-Microstructure-Performance Relationships

Understanding process-microstructure-performance relationships are critical for components in demanding service environments and loading conditions. Typical defects and microstructures of Laser Powder Bed Fusion (LPBF) 316L stainless steel are shown in the figure below.

In-Process Monitoring

Monitoring process conditions during manufacturing is fundamental to verifying and certifying the quality of parts produced. The video below shows a high-speed melt pool temperature measurement system developed here at Imperial to understand conditions in the melt pool and monitor those conditions throughout the build.

https://ars.els-cdn.com/content/image/1-s2.0-S221486041830188X-mmc1.mp4

The video below shows a layer-wise temperature monitoring system to understand how the temperature of the surface layer changes throughout a build.

https://youtu.be/52RTCh8PruY

Simulation

In parallel with developing improved understanding and monitoring techniques of build processes is the development simulation tools to aid understanding and provide a predictive capability. The integrated experimental and simulation approach is shown in the figure below along with a simulation to predict temperature gradients and residual stress in LPBF parts.

Integrated experimental and simulation approach

https://www.youtube.com/watch?v=WfIlJFMKfu8

High-strain rate material behaviour

show research

Industrial Collaborators

show research
  • Arup Resilience, Security & Risk
  • Centre for the Protection of National Infrastructure (CPNI)
  • Office of Naval Research (ONR)
  • MoD
  • EoN