Imperial College London

ProfessorPeterKing

Faculty of EngineeringDepartment of Earth Science & Engineering

Chair in Porous Media Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7362peter.king

 
 
//

Location

 

1.40Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Sadeghnejad:2016,
author = {Sadeghnejad, S and Masihi, M and King, PR},
title = {Study the connectivity of good sands between two wells represented by two points using percolation theory},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - One of the major applications of percolation theory in petroleum engineering is investigation of connectivity in complex formations. Production normally is achieved through a heterogeneous porous media. Proper assessment of connectivity of formation considering its heterogeneity is important in formation evaluation. Percolation assumes that heterogeneity can be simplified to either permeable or impermeable rocktypes. Considering this, the system outcome (e.g., prediction of recovery) can be easily described by simple mathematical relationships which are entirely independent of small-scale details of formation. The main contribution of this work is to use a continuum percolation approach to estimate the connectivity of permeable sands via two points (P2P) representing two injection and production wells and comparing the results with the conventional line to line connectivity (L2L) in previous studies. In particular, the percolation exponents will be investigated both in P2P and L2L and their connectivity curves will be compared. For this purpose, an object-based technique based on Monte-Carlo simulation is used to model the spatial distribution of isotropic sandbodies in 2-D. The results showed that proper modelling of the shape of wells is a critical issue that can alter the obtained results associated with the amount of connected hydrocarbon when one uses the percolation approach.
AU - Sadeghnejad,S
AU - Masihi,M
AU - King,PR
PY - 2016///
TI - Study the connectivity of good sands between two wells represented by two points using percolation theory
ER -