Imperial College London

ProfessorPetraHajkova

Faculty of MedicineInstitute of Clinical Sciences

Professor of Developmental Epigenetics
 
 
 
//

Contact

 

+44 (0)20 3313 8264petra.hajkova Website

 
 
//

Location

 

4006CRB (Clinical Research Building)Hammersmith Campus

//

Summary

 

Summary

Epigenetic reprogramming encompasses changes in nuclear architecture and epigenetic modifications, eventually leading to a shift in gene expression profile. At the molecular level, such a process is connected with the erasure of epigenetic marks including DNA methylation and histone modifications. Our laboratory uses in vivo models to elucidate molecular mechanisms underlying naturally occurring reprogramming events. The knowledge gained allows us to design in vitro experimental systems and to use biochemical approaches to investigate further molecular details.

We study the reprogramming events both in the developing mouse germ line and in the mouse zygote. The former involves both genome-wide DNA demethylation and chromatin remodelling, whereas reprogramming the zygote involves genome-wide DNA demethylation affecting only the paternal genome a few hours after fertilisation.

As epigenetic reprogramming plays a pivotal role in the dedifferentiation and the reversal of cell fate decisions, investigation of molecular pathways underlying such processes provides direct mechanistic links to regeneration and cancer.

Publications

Journals

Benesova M, Trejbalova K, Kucerova D, et al., Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation, Molecular Carcinogenesis, ISSN:1098-2744

Amouroux R, McEwen KR, Hajkova P, 2014, Current technological advances in mapping new DNA modifications, Drug Discovery Today: Disease Models, Vol:12, ISSN:1740-6757, Pages:15-26

Ferry L, Fournier A, Tsusaka T, et al., 2017, Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation, Molecular Cell, Vol:67, ISSN:1097-2765, Pages:550-+

Benesova M, Trejbalova K, Kucerova D, et al., 2017, Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation, Molecular Carcinogenesis, Vol:56, ISSN:0899-1987, Pages:1837-1850

Conference

Wyck S, Herrera C, Requena-Torres C, et al., 2017, Oxidative stress in sperm causes developmental and epigenetic defects during bovine early embryonic development, 21st Annual Conference of the European-Society-for-Domestic-Animal-Reproduction (ESDAR), WILEY, Pages:143-143, ISSN:0936-6768

More Publications