Imperial College London

ProfessorPetraHajkova

Faculty of MedicineInstitute of Clinical Sciences

Professor of Developmental Epigenetics
 
 
 
//

Contact

 

+44 (0)20 7594 6754petra.hajkova Website

 
 
//

Location

 

5.11CLMS BuildingHammersmith Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Hajkova:2017:10.1083/jcb.201611012,
author = {Hajkova, P and Schneider, R},
doi = {10.1083/jcb.201611012},
journal = {Journal of Cell Biology},
pages = {3017--3028},
title = {Dynamic changes in H1 subtype composition during epigenetic reprogramming},
url = {http://dx.doi.org/10.1083/jcb.201611012},
volume = {216},
year = {2017}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - In mammals, histone H1 consists of a family of related proteins, including five replication-dependent (H1.1–H1.5) and two replication-independent (H1.10 and H1.0) subtypes, all expressed in somatic cells. To systematically study the expression and function of H1 subtypes, we generated knockin mouse lines in which endogenous H1 subtypes are tagged. We focused on key developmental periods when epigenetic reprogramming occurs: early mouse embryos and primordial germ cell development. We found that dynamic changes in H1 subtype expression and localization are tightly linked with chromatin remodeling and might be crucial for transitions in chromatin structure during reprogramming. Although all somatic H1 subtypes are present in the blastocyst, each stage of preimplantation development is characterized by a different combination of H1 subtypes. Similarly, the relative abundance of somatic H1 subtypes can distinguish male and female chromatin upon sex differentiation in developing germ cells. Overall, our data provide new insights into the chromatin changes underlying epigenetic reprogramming. We suggest that distinct H1 subtypes may mediate the extensive chromatin remodeling occurring during epigenetic reprogramming and that they may be key players in the acquisition of cellular totipotency and the establishment of specific cellular states.
AU - Hajkova,P
AU - Schneider,R
DO - 10.1083/jcb.201611012
EP - 3028
PY - 2017///
SN - 1540-8140
SP - 3017
TI - Dynamic changes in H1 subtype composition during epigenetic reprogramming
T2 - Journal of Cell Biology
UR - http://dx.doi.org/10.1083/jcb.201611012
UR - http://hdl.handle.net/10044/1/50078
VL - 216
ER -