Imperial College London

DrRyanBarnett

Faculty of Natural SciencesDepartment of Mathematics

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 8536r.barnett Website

 
 
//

Location

 

6M49Huxley BuildingSouth Kensington Campus

//

Summary

 

Quantum Mechanics II - M3A52

Aims

Quantum mechanics is one of the most successful theories in modern physics and has an exceptionally beautiful underlying mathematical structure. It provides the basis for many areas of contemporary physics, including atomic and molecular, condensed matter, high-energy particle physics, quantum information theory, and quantum cosmology, and has led to countless technological applications. Quantum theory combines tools and concepts from various areas of mathematics and physics, such as classical mechanics, linear algebra, probability theory, numerical methods, analysis and even geometry. However, most of the concepts are basic, and little background knowledge is required before we can put them to practical use.

This module is intended to be a second course in quantum mechanics and will build on topics covered in Quantum Mechanics I.

In addition to the material below, this level 7 (Masters) version of the module will have additional extension material for self-study. This will require a deeper understanding of the subject than the corresponding level 6 (Bachelors) module.

 

 

Role

Lecturer

Quantum Mechanics II - M5A52

Aims

Quantum mechanics is one of the most successful theories in modern physics and has an exceptionally beautiful underlying mathematical structure. It provides the basis for many areas of contemporary physics, including atomic and molecular, condensed matter, high-energy particle physics, quantum information theory, and quantum cosmology, and has led to countless technological applications. Quantum theory combines tools and concepts from various areas of mathematics and physics, such as classical mechanics, linear algebra, probability theory, numerical methods, analysis and even geometry. However, most of the concepts are basic, and little background knowledge is required before we can put them to practical use.

This module is intended to be a second course in quantum mechanics and will build on topics covered in Quantum Mechanics I.

In addition to the material below, this level 7 (Masters) version of the module will have additional extension material for self-study. This will require a deeper understanding of the subject than the corresponding level 6 (Bachelors) module.

Role

Lecturer

Quantum Mechanics II - M4A52

Aims

Quantum mechanics is one of the most successful theories in modern physics and has an exceptionally beautiful underlying mathematical structure. It provides the basis for many areas of contemporary physics, including atomic and molecular, condensed matter, high-energy particle physics, quantum information theory, and quantum cosmology, and has led to countless technological applications. Quantum theory combines tools and concepts from various areas of mathematics and physics, such as classical mechanics, linear algebra, probability theory, numerical methods, analysis and even geometry. However, most of the concepts are basic, and little background knowledge is required before we can put them to practical use.

This module is intended to be a second course in quantum mechanics and will build on topics covered in Quantum Mechanics I.

In addition to the material below, this level 7 (Masters) version of the module will have additional extension material for self-study. This will require a deeper understanding of the subject than the corresponding level 6 (Bachelors) module.

 

Role

Lecturer