Imperial College London

Professor Kitney

Faculty of EngineeringDepartment of Bioengineering

Professor of BioMedical Systems Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6226r.kitney Website

 
 
//

Assistant

 

Ms Tania Briggs +44 (0)20 7594 6226

 
//

Location

 

3.16Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

419 results found

Sainz de Murieta Fuentes I, bultelle M, kitney, 2015, A DICOM Extension Supporting Data Acquisition in Synthetic Biology, Synthetic Biology: Engineering, Evolution & Design (SEED)

Conference paper

bultelle, Sainz de Murieta Fuentes I, kitney RI, 2015, Introducing Synbis – the Synthetic Biology Information System, Synthetic Biology: Engineering, Evolution & Design (SEED)

Conference paper

Tay D, Poh CL, Kitney RI, 2015, A novel neural-inspired learning algorithm with application to clinical risk prediction, JOURNAL OF BIOMEDICAL INFORMATICS, Vol: 54, Pages: 305-314, ISSN: 1532-0464

Journal article

Kelwick R, Kopniczky M, Bower I, Chi W, Chin MHW, Fan S, Pilcher J, Strutt J, Webb AJ, Jensen K, Stan G-B, Kitney R, Freemont Pet al., 2015, A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered <i>Escherichia coli</i>, PLOS ONE, Vol: 10, ISSN: 1932-6203

Journal article

Baldwin G, Bayer T, Dickinson R, Ellis T, Freemont PS, Kitney RI, Polizzi K, Stan GBet al., 2015, Synthetic biology - a primer, ISBN: 9781783268801

Synthetic Biology - A Primer (Revised Edition) presents an updated overview of the field of synthetic biology and the foundational concepts on which it is built. This revised edition includes new literature references, working and updated URL links, plus some new figures and text where progress in the field has been made. The book introduces readers to fundamental concepts in molecular biology and engineering and then explores the two major themes for synthetic biology, namely ‘bottom-up’ and ‘top-down’ engineering approaches. ‘Top-down’ engineering uses a conceptual framework of systematic design and engineering principles focused around the Design-Build-Test cycle and mathematical modelling. The ‘bottom-up’ approach involves the design and building of synthetic protocells using basic chemical and biochemical building blocks from scratch exploring the fundamental basis of living systems. Examples of cutting-edge applications designed using synthetic biology principles are presented, including: the production of novel, microbial synthesis of pharmaceuticals and fine chemicals the design and implementation of biosensors to detect infections and environmental waste. The book also describes the Internationally Genetically Engineered Machine (iGEM) competition, which brings together students and young researchers from around the world to carry out summer projects in synthetic biology. Finally, the primer includes a chapter on the ethical, legal and societal issues surrounding synthetic biology, illustrating the integration of social sciences into synthetic biology research. Final year undergraduates, postgraduates and established researchers interested in learning about the interdisciplinary field of synthetic biology will benefit from this up-to-date primer on synthetic biology.

Book

Casini A, Christodoulou G, Freemont PS, Baldwin GS, Ellis T, MacDonald JTet al., 2014, R2oDNA Designer: Computational Design of Biologically Neutral Synthetic DNA Sequences, ACS SYNTHETIC BIOLOGY, Vol: 3, Pages: 525-528, ISSN: 2161-5063

Journal article

Luboz V, Kyaw-Tun J, Sen S, Kneebone R, Dickinson R, Kitney R, Bello Fet al., 2014, Real-time stent and balloon simulation for stenosis treatment, VISUAL COMPUTER, Vol: 30, Pages: 341-349, ISSN: 0178-2789

Journal article

Tay D, Poh CL, Goh C, Kitney RIet al., 2014, A biological continuum based approach for efficient clinical classification, JOURNAL OF BIOMEDICAL INFORMATICS, Vol: 47, Pages: 28-38, ISSN: 1532-0464

Journal article

Dickinson RJ, Kitney RI, 2014, Information driven care pathways and procedures, IFMBE Proceedings, Vol: 41, Pages: 1322-1325, ISSN: 1680-0737

The paper addresses the issue of the implementation of care pathways in electronic form. Within the National Health Service (NHS) of England, Care Pathways are becoming increasingly important. These are typically provided by the Department of Health. The Pathways provided are in the form of paper-based schema. They either have to be implemented via paper forms or, as presented here, in electronic form. In addition, care pathways must be seen in the context of the TModel of health care which comprises the care continuum and the biological continuum. The two care pathways which had been chosen as exemplars are myocardial infarction and stroke. However, the objective of the paper is not to discuss the specific care pathways in detail, but, rather, to describe technology which has been developed for their electronic implementation. The result of this implementation is that all the data and information acquired from the implementation of the care pathway is stored in a single clinical information system (CIS), which has incorporated in it the SQL database. Another important element of the system which has been developed is the ability to display data and information in terms of two dashboards (i.e. single screens which show the most important information). The two dashboards display clinical information (the point of care dashboard) and management information (the management dashboard). © Springer International Publishing Switzerland 2014.

Journal article

Tay D, Poh CL, Goh C, Kitney RIet al., 2013, An Evolutionary Data-Conscious Artificial Immune Recognition System, 15th Genetic and Evolutionary Computation Conference (GECCO), Pages: 1101-1108

Conference paper

Kelay T, Kesavan S, Collins RE, Kyaw-Tun J, Cox B, Bello F, Kneebone RL, Sevdalis Net al., 2013, Techniques to aid the implementation of novel clinical information systems: A systematic review, INTERNATIONAL JOURNAL OF SURGERY, Vol: 11, Pages: 783-791, ISSN: 1743-9191

Journal article

Yang X, Han R, Guo Y, Bradley J, Cox B, Dickinson R, Kitney Ret al., 2012, Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA, Bmc Bioinformatics, Vol: 13, ISSN: 1471-2105

Journal article

Kitney R, Freemont P, 2012, Synthetic biology - the state of play, FEBS LETTERS, Vol: 586, Pages: 2029-2036, ISSN: 0014-5793

Journal article

Kitney RI, 2012, Synthetic Biology - A Primer, Publisher: Imperial College Press London

Book

Wang B, Kitney RI, Joly N, Buck Met al., 2011, Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology, Nature Communications, Vol: 2:508

Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts.

Journal article

MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan G-BVet al., 2011, Computational design approaches and tools for synthetic biology, INTEGRATIVE BIOLOGY, Vol: 3, Pages: 97-108, ISSN: 1757-9694

Journal article

Poh CL, Cui LC, Kitney RI, 2010, Modeling biological systems in Laplace Domain for Synthetic Biology Design, WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, Pages: 1377-1380, ISSN: 1680-0737

Conference paper

Gulati S, Rouilly V, Niu X, Chappell J, Kitney RI, Edel JB, Freemont PS, deMello AJet al., 2009, Opportunities for microfluidic technologies in synthetic biology, JOURNAL OF THE ROYAL SOCIETY INTERFACE, Vol: 6, ISSN: 1742-5689

Journal article

Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PMM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmueller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer H-P, Nemeth G, Raicu DS, Rau A-M, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf Iet al., 2009, Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets, IEEE TRANSACTIONS ON MEDICAL IMAGING, Vol: 28, Pages: 1251-1265, ISSN: 0278-0062

Journal article

Poh C-L, Kitney RI, Akhtar S, 2009, Web-Based Multilayer Viewing Interface for Knee Cartilage, IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, Vol: 13, Pages: 546-553, ISSN: 1089-7771

Journal article

Poh C-L, Kitney RI, Akhtar S, 2009, Web-based multilayer viewing interface for knee cartilage., IEEE Trans Inf Technol Biomed, Vol: 13, Pages: 546-553

Many adults suffer from osteoarthritis (OA) with the majority of people over 65 showing radiographic evidence of the disease. To carry out effective diagnosis and treatment, it is necessary to understand the progression of cartilage loss and study the effectiveness of therapeutic interventions. Hence, it is important to have accurate, fast diagnosis of the disease. In this paper, we describe a Web-based user interface that enables the direct viewing of 2-D and 3-D image data from the visceral and tissue levels of the biological continuum (i.e., the continuum comprising systems, viscera, tissue, cells, proteins, and genes)--while preserving geometric integrity. This is achieved despite the fact that the data are from different modalities (i.e., magnetic resonance (MR) and light microscopy). The user interface was tested using image data acquired from a study of articular cartilage thickness in the porcine knee. The interface allows the clinician to view both MR and light microscopy images in an integrated manner-with the information linked geometrically.

Journal article

Kitney RI, 2009, Synthetic Biology: scope, applications and implications, Synthetic biology: scope, applications and implications, Publisher: The Royal Academy of Engineering

Report

Delakis I, Xanthis C, Kitney RI, 2009, Assessment of the limiting spatial resolution of an MRI scanner by direct analysis of the edge spread function, MEDICAL PHYSICS, Vol: 36, Pages: 1637-1642, ISSN: 0094-2405

Journal article

Wang B, Kitney R, Buck M, Jovanovic M, Joly N, James Eet al., 2009, The Design and Construction of a Set of Modular Synthetic BioLogic Devices for Programming Cells, World Congress on Medical Physics and Biomedical Engineering, Publisher: Springer Berlin Heidelberg, Pages: 289-292

Modularity is an essential property for rationally engineered standard parts and devices. This principle is now being extended to biological based parts and devices for programming cells. However, the design principles and building blocks which are currently in Synthetic Biology are somewhat limited. In addition, it is important to explore the underlying mechanisms of existing, natural biological systems in order to utilise them in designing novel genetic circuit modules. In this paper, we will describe a set of modular synthetic biological parts and devices that are based in rational design. Particularly, a modular tight-controlled and hypersensitive genetic circuit with digital logic AND function is rationally designed and engineered. They use a sigma factor 54( σ 54 ) dependent hetero-regulation module in the hrp (hypersensitive response and pathogenicity) gene regulatory system for Type III secretion in Pseudomonas syringae . Their inputs and outputs are both promoters and thus do not rely on specific inducible promoters and could drive various cellular responses. It shows that the hrp system has significant potential for building a range of biological parts and devices with good performance and flexibility.

Conference paper

Kitney RI, 2009, Synthetic Biology, ISBN: 9781903496442

Book

Noirhomme Q, Kitney RI, Macq B, 2008, Single-trial EEG source reconstruction for brain-computer interface, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, Vol: 55, Pages: 1592-1601, ISSN: 0018-9294

Journal article

Kitney RI, Freemont PS, Rouilly V, 2007, Engineering a molecular predation oscillator, IET Synthetic Biology, Vol: 1, Pages: 68-70, ISSN: 1752-1394

The paper addresses the problem of designing and building a stable molecular based oscillator which can be controlled in terms of both amplitude and frequency. A study of previous oscillators of this type showed that they are inherently unstable. To overcome this problem a design was chosen which is based on Lotka-Voltera dynamics. An important aspect of the work was the use of what we term the Engineering Cycle; that is, the cycle of system specification, design, modelling, implementation, and testing and validation. The Lotka-Voltera dynamic, in the context of a predation oscillator, amounts to a predator-prey approach. This is the basis of the oscillator design. The oscillator was designed and detailed modelling undertaken to establish the modes of the dynamic; how it could be tuned for stability; and how to control its amplitude and frequency. The biological implementation of the design was undertaken using a number of BioBricks from the MIT registry (http://parts.mit.edu/registry/ index.php/Main_Page), together with a number of parts which we designed and built. © 2007 The Institution of Engineering and Technology.

Journal article

Delakis I, Hammad O, Kitney RI, 2007, Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI), PHYSICS IN MEDICINE AND BIOLOGY, Vol: 52, Pages: 3741-3751, ISSN: 0031-9155

Journal article

Poh C-L, Kitney RI, Shrestha RBK, 2007, Addressing the future of clinical information systems - Web-based multilayer visualization, IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, Vol: 11, Pages: 127-140, ISSN: 1089-7771

Journal article

Poh C L, Kitney R I, Akhtar S, Alam Met al., 2007, Multi-Layer Biological Visualisation of Cartilage Wear, Proceedings of the World Congress on Medical Physics and Biomedical Engineering, 2006, Pages: 211-214

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00003301&limit=30&person=true&page=2&respub-action=search.html