Imperial College London

Dr Reiko J. Tanaka

Faculty of EngineeringDepartment of Bioengineering




+44 (0)20 7594 6374r.tanaka Website




B436Bessemer BuildingSouth Kensington Campus





With her special interest in regulatory mechanisms in biological systems combined with her background in engineering systems and control theory, Dr Tanaka aims to search for fundamental rules and mechanisms of biological control from the viewpoint of control, and to make a decisive contribution to systems medicine and biology. Mathematical modelling allows us to investigate and extract common design principles in diverse systems across the cellular, tissue, organ and behavioural levels. Since most diseases are caused by malfunctioning of various regulatory mechanisms, understanding of common control design principles helps to identify key mechanisms to investigate and to propose and answer clinically/biologically relevant questions that could not even te posed without it.

For the detail of her research interests, please see TANAKA Group.

Reiko has experiences in multi-disciplinary research and education environements in different research organisations in several countries. After she obtained her PhD from the Department of Mathematical Engineering and Information Physics, University of Tokyo, she was appointed as an Assistant Professor in the Department of Applied Physics and Physico-Informatics, Keio University. With her strong interest in the new area of systems biology, she obtained a fellowship from JSPS (Japan Society for the Promotion of Science) to join Professor John Doyle''s group in California Institute of Technology as a Visiting Associate. Since then she has been working in the area of systems biology from the systems and control viewpoint. Before joining Imperial, she was a research scientist in Biological Control Systems lab. in RIKEN.

Reiko’s research publications can be found at the tab above, or on Google Scholar

Selected Publications

Journal Articles

Dominguez-Huettinger E, Boon NJ, Clarke TB, et al., 2017, Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment, Frontiers in Physiology, Vol:8, ISSN:1664-042X

Tanaka RJ, Boon NJ, Vrcelj K, et al., 2015, In silico modeling of spore inhalation reveals fungal persistence following low dose exposure, Scientific Reports, Vol:5, ISSN:2045-2322

Ono M, Tanaka RJ, 2016, Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective, Immunology and Cell Biology, Vol:94, ISSN:0818-9641, Pages:3-10

van Logtestijn MDA, Dominguez Huttinger E, Stamatas GN, et al., 2015, Resistance to Water Diffusion in the Stratum Corneum Is Depth-Dependent, PLOS One, Vol:10, ISSN:1932-6203

Dominguez-Huettinger E, Ono M, Barahona M, et al., 2013, Risk factor-dependent dynamics of atopic dermatitis: modelling multi-scale regulation of epithelium homeostasis, Interface Focus, Vol:3, ISSN:2042-8898

Tanaka RJ, Ono M, 2013, Skin Disease Modeling from a Mathematical Perspective, Journal of Investigative Dermatology, Vol:133, ISSN:0022-202X, Pages:1472-1478

Tanaka RJ, Ono M, Harrington HA, 2011, Skin Barrier Homeostasis in Atopic Dermatitis: Feedback Regulation of Kallikrein Activity, PLOS One, Vol:6, ISSN:1932-6203

Tanaka RJ, Okano H, Kimura H, 2006, Mathematical description of gene regulatory units, Biophysical Journal, Vol:91, ISSN:0006-3495, Pages:1235-1247

Doyle JC, Alderson DL, Li L, et al., 2005, The "robust yet fragile" nature of the Internet., Proceedings of the National Academy of Sciences of the United States of America, Vol:102, ISSN:0027-8424, Pages:14497-14502

More Publications