Imperial College London

ProfessorRobertVollum

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Professor of Structural Concrete
 
 
 
//

Contact

 

+44 (0)20 7594 5992r.vollum

 
 
//

Location

 

323Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Pastore:2019,
author = {Pastore, MVF and Vollum, RL},
pages = {1755--1762},
title = {An analysis of the shear transfer actions in RC short span beams using crack kinematics recorded via DIC},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Shear in reinforced concrete (RC) beams is resisted by a combination of the flexural compression zone, residual tensile stress, aggregate interlock, dowel action and shear reinforcement if present. The proportion of shear force resisted by each shear action is directly related to the kinematics (opening and sliding) of the critical shear crack. In beams loaded within around twice the effective depth (d) of supports, shear resistance is increased by arching action whereby part of the load is transferred to the nearest support through direct strutting action. The paper describes a study which was undertaken to investigate shear transfer mechanisms in beams loaded near their supports. A total of four simply supported RC beams (three short-span and one slender beams) without shear reinforcement were tested to study the influence of loading arrangement on shear enhancement and the kinematics of the critical shear crack. Two of the beams were loaded with two/three concentrated loads applied within 2d and at 3d from the support where shear failure occurred. The crack kinematics were determined during loading using digital image correlation (DIC). For each beam, constitutive models from the literature were used to assess the contribution of each shear resisting mechanism at various loading stages up to failure. The paper presents selected test results and relates the contribution of each shear resisting mechanism to the loading arrangement, shape of the critical shear crack and its kinematics. Finally, general observations are made about shear resisting mechanisms in the tested beams.
AU - Pastore,MVF
AU - Vollum,RL
EP - 1762
PY - 2019///
SP - 1755
TI - An analysis of the shear transfer actions in RC short span beams using crack kinematics recorded via DIC
ER -