Imperial College London

ProfessorRobertGross

Faculty of Natural SciencesCentre for Environmental Policy

Professor of Energy Policy and Technology
 
 
 
//

Contact

 

+44 (0)20 7594 9324robert.gross CV

 
 
//

Location

 

201Weeks BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

92 results found

Hanna R, Heptonstall P, Gross R, 2024, Job creation in a low carbon transition to renewables and energy efficiency: a review of international evidence, Sustainability Science, Vol: 19, Pages: 125-150, ISSN: 1862-4057

In this paper we present findings from a systematic review on job creation, quality,and skills, focusing on decarbonisation in the energy sector. We compare a range ofgross job employment factors which indicate that overall, investment in renewableenergy and energy efficiency can deliver more jobs than gas or coal powergeneration. In addition, we review a subset of recent studies which estimate the netemployment effects of decarbonisation in the energy sector at a national scale,across various international contexts. These national studies largely agree that themost likely outcome over the next few decades is a modest net positive creation ofjobs and moderate economic growth. In certain regions within these countries, jobs infossil fuel industries may be lost faster than the pace at which low carbon energysectors can offer new employment. There may be mismatches between regionswhere displaced workers live and where new opportunities become available, whichmay be a barrier to accepting alternative employment even if former workers havethe requisite skills. In these cases national government transition plans arerecommended, co-ordinated with local governments, to manage the impacts ofdisplacement from carbon intensive sectors and respond to the need to build a newlow carbon workforce including through skills development and training. We highlighta lack of metrics and data in the literature on job quality, skills, and the geographicdistribution of employment impacts in decarbonising energy systems, and theseshould be priority areas for further research.

Journal article

Blyth W, Gross R, Rickman J, Maciver C, Bell Ket al., 2023, Transition risk: Investment signals in a decarbonising electricity system, APPLIED ENERGY, Vol: 352, ISSN: 0306-2619

Journal article

Hanna R, Heptonstall P, Gross R, 2022, Green job creation, quality and skills: A review of the evidence on low carbon energy. UKERC Technology and Policy Assessment., Publisher: UK Energy Research Centre

The net employment impacts of a renewable energy or energy efficiency investment account both for jobs that are created, as well as jobs that might be displaced in other parts of the economy as a result of the investment. This report therefore addresses the following research question:How many jobs can be created by policy support for investment in low carbon energy and energy efficiency compared to supporting fossil fuel incumbents?The review identifies a variety of approaches used to estimate the quantity of low carbon energy job creation. It finds that much greater standardisation of methods would be desirable in order to compare how many jobs can be created by policies supporting low carbon energy and energy efficiency, both at a project scale and a wider societal level. Our findings also underline a relative lack of metrics and data measuring quality, skills, and geographic distribution of low carbon job creation, and these should be priority areas for further research.

Report

Gambhir A, Green R, Grubb M, Heptonstall P, Wilson C, Gross Ret al., 2021, How are future energy technology costs estimated? can we do better?, International Review of Environmental and Resource Economics, Vol: 15, Pages: 1-48, ISSN: 1932-1465

Making informed estimates of future energy technology costs is central to understanding the cost of the low-carbon transition. A number of methods have been used to make such estimates: extrapolating empirically derived learning rates; use of expert elicitations; and engineering assessments which analyse future developments for technology components’ cost and performance parameters. In addition, there is a rich literature on different energy technology innovation systems analysis frameworks, which identify and analyse the many processes that drive technologies’ development, including those that make them increasingly cost-competitive and commercially ready. However, there is a surprising lack of linkage between the fields of technology cost projections and technology innovation systems analysis. There is a clear opportunity to better relate these two fields, such that the detailed processes included in technology innovation systems frameworks can be fully considered when estimating future energy technology costs.Here we demonstrate how this can be done. We identify that learning curve, expert elicitation and engineering assessment methods already either implicitly or explicitly incorporate some elements of technology innovation systems frameworks, most commonly those relating to R&D and deployment-related drivers. Yet they could more explicitly encompass a broader range of innovation processes. For example, future cost developments could be considered in light of the extent to which there is a well-functioning energy technological innovation system (TIS), including support for the direction of technology research, industry experimentation and development, market formation including by demand-pull policies and technology legitimation. We suggest that failure to fully encompass such processes may have contributed to overestimates of nuclear cost reductions and under-estimates of offshore wind cost reductions in the last decade.

Journal article

Hanna R, Gross R, 2021, Heating system transformation in Europe: accelerating sources of path dependence to escape carbon lock-in, Research Handbook on Energy and Society, Publisher: Edward Elgar Publishing, ISBN: 9781839100703

In this chapter, we present evidence from a systematic review on how policies, markets and natural resource availability have affected heat system change and decarbonisation in Denmark, Germany, and the United Kingdom. We focus on two heat supply technologies for which sufficient historic evidence of policies and market evolution is available: heat pumps and district heating. Our review reveals that initially unfamiliar, low carbon heating technologies can become mainstream over several decades. A key challenge of heat decarbonisation is transitioning from relatively low-cost heating sources that are either inherited from a country’s natural resources or originate from path-dependent developments. This may involve accepting initially higher costs, developing new infrastructure, and co-ordinated consumer awareness campaigns to promote low carbon heating alternatives. To overcome lock-in to high carbon heating, policy makers should aim to stimulate increasing returns to adoption of alternative, low carbon heating solutions over a prolonged period of policy action.

Book chapter

Johnson NJ, Gross R, Staffell I, 2021, Stabilisation wedges: measuring progress towards transforming the global energy and land use systems, Environmental Research Letters, Vol: 16, ISSN: 1748-9326

15 years ago, Pacala and Socolow argued that global carbon emissions could be stabilised by mid-century using a portfolio of existing mitigation strategies. We assess historic progress for each of their proposed mitigation strategies and convert this into the unit of 'wedges'. We show that the world is on track to achieve 1.5 ± 0.9 wedges relative to seven required to stabilise emissions, or 14 required to achieve net-zero emissions by mid-century. Substantial progress has been made in some domains that are not widely recognised (improving vehicle efficiency and declining vehicle use); yet this is tempered by negligible or even negative progress in many others (particularly tropical tree cover loss in Asia and Africa). By representing global decarbonisation efforts using the conceptually simple unit of wedges, this study helps a broader audience to understand progress to date and engage with the need for much greater effort over the coming decades.

Journal article

Carmichael R, Gross R, Hanna R, Rhodes A, Green Tet al., 2021, The Demand Response Technology Cluster: accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools, Renewable and Sustainable Energy Reviews, Vol: 139, ISSN: 1364-0321

Cost-effectively decarbonising the power sector and household energy use using variable renewable energy will require that electricity consumption becomes much more flexible and responsive to constraints in supply and the distribution network. In recent years residential demand response (DR) has received increasing attention that has sought to answer, based on current evidence, questions about how much consumers will engage with DR. This paper critically reviews the evidence base for residential consumer engagement with DR and draws out several important limitations in it. We argue for a more action- oriented focus on developing practical strategies to enable and unlock greater loadshifting and consumer engagement with DR within a changing technology and regulatory context. A number of recommendations are put forward for accelerating UK consumer engagement with DR, presented under three broad strategies: (a) promote awareness of smart tariffs, smart meters and storage and automation behind-the-meter devices as mutually-supportive components within a common ‘DR technology cluster’; (b) deliver targeted support for adoption of electric vehicles and other storage and automation technologies; (c) enable and support informed adoption of DR-enabling products and services through ‘smarter’ digital comparison tools (DCTs), data portability, and faster, simpler switching. The interdependency between components within this DR technology cluster delivers efficiency but also poses a risk that one delayed component (e.g., smart metering) will hold-up policy and industry support for other components. The urgency of decarbonisation goals makes it necessary to push forward as many of these elements as possible rather than the pace being set by the slowest.

Journal article

Hanna R, Gross R, 2021, How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners, Energy Policy, Vol: 149, ISSN: 0301-4215

Scenarios may be qualitative or quantitative, the latter of which can be developed using energy systems models. This study explores how different energy systems models and scenarios explicitly represent and assess potential disruptions and discontinuities. The focus is on futures studies and forward-looking scenario and modelling exercises. We apply definitions of ‘emergent’ (uncoordinated) and ‘purposive’ (coordinated) disruption to a systematic review on how energy systems models and scenarios have been used to capture disruption and discontinuity. We first conducted a review of reviews of energy models and scenarios to provide an overview of their common classifications. Additional searches then sought studies which use different types of models and scenarios to explore disruption and discontinuity. We analyse a subset of 30 of these modelling or scenario studies in which authors self-identify and represent disruption or discontinuity, finding that the most frequently used methods were qualitative, exploratory foresight scenarios or agent-based models. We conclude that policy makers could prepare more effectively for social, economic and political disruption by integrating multidisciplinary insights from social and political sciences, engineering and economics through a broader range of methods: exploratory, foresight scenarios, simulation and agent-based models and repurposed energy systems optimisation models.

Journal article

Heptonstall P, Gross R, 2020, A systematic review of the costs and impacts of integrating variable renewables into power grids, Nature Energy, Vol: 6, Pages: 72-83, ISSN: 2058-7546

The impact of variable renewable energy (VRE) sources on an electricity system depends on technological characteristics, demand, regulatory practices, and renewable resources. The costs of integrating wind or solar power into electricity networks have been debated for decades yet remain controversial and often misunderstood. Here, we undertake a systematic review of the international evidence on the cost and impact of integrating wind and solar to provide policymakers with evidence to inform strategic choices about which technologies to support. We find a wide range of costs across the literature, which depend largely on the price and availability of flexible system operation. Costs are small at low penetrations of VRE and can even be negative. Data are scarce at high penetrations, but show that the range widens. Nonetheless, VRE sources can be a key part of a least-cost route to decarbonisation.

Journal article

Carmichael R, Rhodes A, Hanna R, Gross Ret al., 2020, Smart and flexible electric heat: an energy futures lab briefing paper, Smart and Flexible Electric Heat: An Energy Futures Lab Briefing Paper

Heating in residential, commercial and industrial settings makes up almost half of final energy consumption in the UK, more than the energy consumed for electricity or transport. The electrification of heat is anticipated to play a major role for the UK’s efforts to reduce emissions to net-zero by 2050. Heating demand is highly variable between seasons and time of day. To take maximum advantage of low-carbon generation, and to respect the limitations of the distribution grid, electricity loads for heating will need to be flexible. This Briefing Paper explores the potential for smart flexible low-carbon electric heating in UK homes and the challenges for consumer engagement. This paper considers four key elements for enabling smart, flexible and cost- effective electric heating in UK homes: low-carbon heating systems; cost-reflective electricity pricing; thermally efficient buildings; and smart storage devices.

Report

Kozarcanin S, Hanna R, Staffell I, Gross R, Andresen GBet al., 2020, Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe, Energy Policy, Vol: 140, Pages: 1-13, ISSN: 0301-4215

Residential demands for space heating and hot water account for 31% of the total European energy demand. Space heating is highly dependent on ambient conditions and susceptible to climate change. We adopt a techno-economic standpoint and assess the impact of climate change on decentralised heating demand and the cost-optimal mix of heat pump and gas boiler technologies. Temperature data with high spatial resolution from nine climate models implementing three Representative Concentration Pathways from IPCC are used to estimate climate induced changes in the European demand side for heating. The demand side is modelled by the proxy of heating-degree days. The supply side is modelled by using a screening curve approach to the economics of heat generation. We find that space heating demand decreases by about 16%, 24% and 42% in low, intermediate and extreme global warming scenarios. When considering historic weather data, we find a heterogeneous mix of technologies are cost-optimal, depending on the heating load factor (number of full-load hours per year). Increasing ambient temperatures toward the end-century improve the economic performance of heat pumps in all concentration pathways. Cost optimal technologies broadly correspond to heat markets and policies in Europe, with some exceptions.

Journal article

Parrish B, Heptonstall P, Gross R, Sovacool BKet al., 2020, A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response, Energy Policy, Vol: 138, Pages: 1-11, ISSN: 0301-4215

Demand response is increasingly attracting policy attention. It involves changing electricity demand at different times based on grid conditions, which could help to integrate variable renewable generation and new electric loads associated with decarbonisation. Residential consumers could offer a substantial new source of demand-side flexibility. However, while there is considerable evidence that at least some residential users engage with at least some forms of demand response, there is also considerable variation in user engagement. Better understanding this variation could help to predict demand response potential, and to engage and protect consumers participating in demand response. Based on a systematic review of international demand response trials, programmes and surveys, we identify motivations for participation, and barriers and enablers to engagement including familiarity and trust, perceived risk and control, complexity and effort, and consumer characteristics and routines. We then discuss how these factors relate to the features of different demand response products and services. While the complexity of the evidence makes it difficult to draw unequivocal conclusions, the findings of this review could contribute to guide early efforts to deploy residential demand response more widely.

Journal article

Gardiner D, Schmidt O, Heptonstall P, Gross R, Staffell Iet al., 2020, Quantifying the impact of policy on the investment case for residential electricity storage in the UK, Journal of Energy Storage, Vol: 27, ISSN: 2352-152X

Electrical energy storage has a critical role in future energy systems, but deployment is constrained by high costs and barriers to ‘stacking’ multiple revenue streams. We analyse the effects of different policy measures and revenue stacking on the economics of residential electricity storage in the UK. We identify six policy interventions through industry interviews and quantify their impact using a techno-economic model of a 4kWh battery paired with a 4kW solar system. Without policy intervention, residential batteries are not currently financially viable in the UK. Policies that enable access to multiple revenue streams, rather than just maximising PV self-consumption, improve this proposition. Demand Load-Shifting and Peak Shaving respectively increase the net present value per unit of investment cost (NPV/Capex) by 30% and 9% respectively. Given projected reductions in storage costs, stacking these services brings forward the break even date for residential batteries by 9 years to 2024, and increases the effectiveness of policies that reduce upfront costs, suggesting that current policy is correctly focused on enabling revenue stacking. However, additional support is needed to accelerate deployment in the near term. Combining revenue stacking with a subsidy of £250 per kWh or zero-interest loans could make residential storage profitable by 2020.

Journal article

Ketsopoulou I, Taylor P, Watson J, Winskel M, Kattirtzi M, Lowes R, Woodman B, Poulter H, Brand C, Killip G, Anable J, Owen A, Hanna R, Gross R, Lockwood Met al., 2019, Disrupting the UK energy system: causes, impacts and policy implications, London, UK., Publisher: UK Energy Research Centre

Report

Parrish B, Gross R, Heptonstall P, 2019, On demand: Can demand response live up to expectations in managing electricity systems?, Energy Research and Social Science, Vol: 51, Pages: 107-118, ISSN: 2214-6296

Residential demand response (meaning changes to electricity use at specific times) has been proposed as an important part of the low carbon energy system transition. Modelling studies suggest benefits may include deferral of distribution network reinforcement, reduced curtailment of wind generation, and avoided investment in reserve generation. To accurately assess the contribution of demand response such studies must be supported by realistic assumptions on consumer participation. A systematic review of international evidence on trials, surveys and programmes of residential demand response suggests that it is important that these assumptions about demand response are not overly optimistic. Customer participation in trials and existing programmes is often 10% or less of the target population, while responses of consumers in existing schemes have varied considerably for a complex set of reasons. Relatively little evidence was identified for engagement with more dynamic forms of demand response, making its wider applicability uncertain. The evidence suggests that the high levels of demand response modelled in some future energy system scenarios may be more than a little optimistic. There is good evidence on the potential of some of the least ‘smart’ options, such as static peak pricing and load control, which are well established and proven. More research and greater empirical evidence is needed to establish the potential role of more innovative and dynamic forms of demand response.

Journal article

Gross R, Hanna R, 2019, Path dependency in provision of domestic heating, Nature Energy, Vol: 4, Pages: 358-364, ISSN: 2058-7546

In the UK, natural gas dominates the provision of heating in buildings. In Sweden, oil heating has been largely replaced by district heating and heat pumps. The origins and outcomes of path dependence and lock-in in heat system evolution can be country specific. Here, we compare case studies of heat transitions in the UK and Sweden, addressing the question: can path dependency help to understand why these countries have followed different paths in terms of change to their heating infrastructure? In both countries the development of heating infrastructures can be understood as path dependent processes, entailing increasing returns to adoption as fuel sources, infrastructures and end use technologies coevolve such that the overall performance of the system increases. The challenge for policymakers seeking to achieve carbon targets is to consider how to create the conditions to encourage increasing returns to adoption of low carbon heating solutions.

Journal article

Kazaglis A, Tam A, Eis J, Watson J, Hughes N, Gross R, Hanna Ret al., 2019, Accelerating innovation towards net zero emissions, Publisher: Vivid Economics

Report

Daggash H, Fajardy M, Heptonstall P, Mac Dowell N, Gross Ret al., 2019, Bioenergy with carbon capture and storage, and direct air carbon capture and storage: Examining the evidence on deployment potential and costs in the UK, London, Publisher: UKERC

Report

Gross R, Hanna RF, Gambhir A, Heptonstall P, Speirs Jet al., 2018, How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology, Energy Policy, Vol: 123, Pages: 685-699, ISSN: 0301-4215

Recent climate change initiatives, such as ‘Mission Innovation’ launched alongside the Paris Agreement in 2015, urge redoubled research into innovative low carbon technologies. However, climate change is an urgent problem – emissions reductions must take place rapidly throughout the coming decades. This raises an important question: how long might it take for individual technologies to emerge from research, find market opportunities and make a tangible impact on emissions reductions? Here, we consider historical evidence for the time a range of energy supply and energy end-use technologies have taken to emerge from invention, diffuse into the market and reach widespread deployment. We find considerable variation, from 20 to almost 70 years. Our findings suggest that the time needed for new technologies to achieve widespread deployment should not be overlooked, and that innovation policy should focus on accelerating the deployment of existing technologies as well as research into new ones.

Journal article

Heptonstall P, Gross R, 2018, What’s in a bill? How UK household electricity prices compare to other countries, London, Publisher: UK Energy Research Centre

Report

Hanna RF, Gazis E, Edge J, Rhodes A, Gross Ret al., 2018, Unlocking the potential of Energy Systems Integration: An Energy Futures Lab Briefing Paper, Publisher: Energy Futures Lab

Energy Systems Integration’s (ESI) underlying concept is the coordination, and integration, of energy generation and use at local, regional and national levels. This relates to all aspects of energy from production and conversion to delivery and end use. Building such a system is potentially a cost-effective way to decarbonise our energy sector and produce a more reliable and resilient system. This Briefing Paper investigates how the UK can link heat, transport, electricity and other energy vectors into one interconnected ecosystem. It lays out the immense opportunities of having an interconnected and integrated energy ecosystem and the technologies that could make it a reality. Among these is enabling variable renewable electricity and lower-carbon fuels to provide energy services traditionally provided by higher-carbon sources. This could be realised through a more resilient system incorporating greater flexibility and more diverse energy sources.

Report

Holland R, Beaumont N, Hooper T, Austen M, Gross R, Heptonstall PJ, Ketsopoulou I, Winskel M, Watson J, Taylor Get al., 2018, Incorporating ecosystem services into the design of future energy systems., Applied Energy, Vol: 222, Pages: 812-822, ISSN: 0306-2619

There is increasing recognition that a whole systems approach is required to inform decisions on future energy options. Based on a qualitative and quantitative analysis of forty influential energy and ecosystem services scenario exercises, we consider how the benefits to society that are derived from the natural environment are integrated within current energy scenarios. The analysis demonstrates a set of common underlying themes across scenario exercises. These include the relative contribution of fossil sources of energy, rates of decarbonisation, the level of international cooperation and globalisation, rate of technological development and deployment, and societies focus on environmental sustainability. Across energy scenario exercises, ecosystem services consideration is primarily limited to climate regulation, food, water resources, and air quality. In contrast, ecosystem services scenarios consider energy systems in a highly aggregated narrative form, with impacts of energy options mediated primarily through climate and land use change. Emerging data and tools offer opportunities for closer integration of energy and ecosystem services scenarios. This can be achieved by incorporating into scenarios exercises both monetary and non-monetary values of ecosystem services, and increasing the spatial representation of both energy systems and ecosystem services. The importance of ecosystem services for human well-being is increasingly recognised in policy at local, national and international scales. Tighter integration of energy and ecosystem service scenarios exercises will allow policy makers to identify pathways consistent with international obligations relating to both anthropogenic climate change and the loss and degradation of biodiversity and ecosystem services.

Journal article

Sahni A, Kazaglis A, Hanna RF, Gross R, Kemp L, Kingsmill N, McCormac Eet al., 2018, International comparisons of heating, cooling and heat decarbonisation policies, Publisher: Department for Business, Energy & Industrial Strategy

As part of its wider research into heat decarbonisation, BEIS commissioned Vivid Economics and Imperial College to summarise the evidence base on how other countries provide heating and cooling. The focus of this report is heating and cooling in buildings, viewed broadly across residential and non-residential sectors with an emphasis on OECD countries. The report focuses on two overarching questions:- what challenges are shared by the UK and with other countries in the area of heat decarbonisation and where is there less commonality?- what learning and innovation opportunities exist outside of the UK, both in countries where there are clear points of comparisons as well as contrasts?

Report

Chase A, Gross R, Heptonstall PJ, Jansen M, Kenefick M, Parrish B, Robson Pet al., 2017, Realising the Potential of Demand Side Response - A report commissioned by BEIS, Publisher: Department for Business, Energy & Industrial Strategy

Report

Rhodes A, Gazis E, Gross RJK, 2017, Is the UK facing an electricity security crisis? An Energy Futures Lab briefing paper., Publisher: Imperial College Energy Futures Lab

Britain’s media outlets have carried manystories about an ‘energy gap’, claimed to havearisen because the UK has failed to buildenough power stations to meet demand. Talkof upcoming ‘blackouts’, with the UK unable toproduce enough electricity to keep the lights on,is commonplace, with several hundred articlespublished in mainstream UK newspapers onthis topic over the last decade. These claimshave always been contested by the governmentand electricity system operator, National Grid,but the debate continues. This Briefing Paper,produced by Energy Futures Lab, reviews theevidence to determine whether the UK will facean electricity security crisis in the coming years.

Report

Heptonstall PJ, Gross R, Steiner F, 2017, The costs and impacts of intermittency - 2016 update, Publisher: UK Energy Research Centre

Report

Heptonstall PJ, Gross R, Steiner F, 2017, The costs and impacts of intermittency - 2016 update, London, Publisher: UK Energy Research Centre

Report

Hanna RF, Gross R, Parrish B, 2016, Best practice in heat decarbonisation policy: A review of the international experience of policies to promote the uptake of low-carbon heat supply

This evidence review evaluates the effectiveness of different policy approaches to support heat supply or infrastructure transitions internationally. Focusing on heat pump deployment and the roll out of district heating, the research identifies lessons from the international policy experience and assess how relevant these might be to the UK context. The report explores the role of different policies – including regulation, fiscal policies, incentives, planning policy and of different models of governance. It also considers historical and contextual factors such as ownership structures, resource endowments and energy prices. The review was undertaken by the UKERC Technology and Policy Assessment team in response to widespread stakeholder interest in policies related to the decarbonisation of heat. It informs the Committee on Climate Change review of heat decarbonisation and seeks to inform the UK Government’s heat strategy, forthcoming in 2017. The main aim of the research is to review and evaluate policies and policy packages used to bring about a substantial change in the technologies and infrastructures used to provide space heating and hot water for homes and businesses. The key question that this TPA project therefore asked is: What policies and other factors have driven change/transformation in heat delivery technologies, fuels and infrastructure?

Report

Parrish B, Heptonstall PJ, Gross R, 2016, The potential for UK residential demand side participation, Publisher: HubNet

Report

Parrish B, Heptonstall PJ, Gross R, 2016, The potential for UK residential demand side participation, Publisher: HubNet

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00171930&limit=30&person=true