Imperial College London


Faculty of EngineeringDepartment of Computing

Research Associate



roman.kolcun Website




Electrical EngineeringSouth Kensington Campus





Publication Type

6 results found

Boyle D, Kolcun R, Yeatman E, 2016, Towards Precision Control in Constrained Wireless Cyber-Physical Systems, 2nd International Summit on Internet of Things - IoT Infrastructures( IoT 360), Publisher: SPRINGER INT PUBLISHING AG, Pages: 292-306, ISSN: 1867-8211


Kolcun R, Boyle D, McCann JA, 2016, Efficient in-network processing for a hardware-heterogeneous IoT, Pages: 93-101

© 2016 ACM. As the number of small, battery-operated, wireless-enabled devices deployed in various applications of Internet of Things (IoT), Wireless Sensor Networks (WSN), and Cyber-physical Systems (CPS) is rapidly increasing, so is the number of data streams that must be processed. In cases where data do not need to be archived, centrally processed, or federated, innetwork data processing is becoming more common. For this purpose, various platforms like DRAGON, Innet, and CJF were proposed. However, these platforms assume that all nodes in the network are the same, i.e. the network is homogeneous. As Moore's law still applies, nodes are becoming smaller, more powerful, and more energy efficient each year; which will continue for the foreseeable future. Therefore, we can expect that as sensor networks are extended and updated, hardware heterogeneity will soon be common in networks-The same trend as can be seen in cloud computing infrastructures. This heterogeneity introduces new challenges in terms of choosing an in-network data processing node, as not only its location, but also its capabilities, must be considered. This paper introduces a new methodology to tackle this challenge, comprising three new algorithms-Request, Traverse, and Mixed-for efficiently locating an in-network data processing node, while taking into account not only position within the network but also hardware capabilities. The proposed algorithms are evaluated against a naïve approach and achieve up to 90% reduction in network traffic during long-Term data processing, while spending a similar amount time in the discovery phase.


Kolcun R, Boyle DE, McCann JA, 2016, Efficient Distributed Query Processing, IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, Vol: 13, Pages: 1230-1246, ISSN: 1545-5955


Boyle D, Kolcun R, Yeatman E, 2015, Devices in the internet of things, Journal of the Institute of Telecommunications Professionals, Vol: 9, Pages: 26-31, ISSN: 1755-9278

There are many potential applications in the utilities, critical infrastructure monitoring and control and environmental monitoring. This article charts the device-level technologies used in the creation the IoT, including hardware, software and communications. IoT's emergence coincided with the development of radio frequency identification (RFID) technology offering advantages such as the communicable range, ability to write data to a tag, and the possibility of reading multiple tags more efficiently with a single reader. RFID is now just one of many component IoT technologies. We have arrived at a situation where it is practically trivial to integrate computation and communication into any manufactured thing, and it is equally feasible to connect and technologically perceive natural things using communicable sensors. Furthermore, it is possible to react to, and control the environment using embedded computing devices coupled with actuators. Thorough comprehension of functional and non-functional requirements is necessary to develop an effective, efficient design specification for an IoT device. But given the large design space and complexity, there are numerous barriers to entry. As a result, many types of device have been adopted as practical de facto hardware development platforms across research communities, anc hacker and maker communities. In each case, intermediary 'operating systems', designed to simplify their programming by masking hardware complexity, are typically used. Their technical specifications are often not fully disclosed, but they do rely on well- defined standards to ensure the necessary interoperability. The majority of devices are characterised as single board computers. The final design for a market-ready product will likely be as efficient and cost-effective as possible in terms of design, but include sufficient redundancy to support software updates and potential shifts in standards. Since the early 2000s, the wireless sensor network comm


Kolcun R, Boyle D, McCann JA, 2015, Optimal Processing Node Discovery Algorithm for Distributed Computing in IoT, 5th International Conference on the Internet of Things (IOT), Publisher: IEEE, Pages: 72-79


Kolcun R, McCann JA, 2014, Dragon: Data Discovery and Collection Architecture for Distributed IoT, International Conference on the Internet of Things (IOT), Publisher: IEEE, Pages: 91-96


This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00563511&limit=30&person=true