Imperial College London

ProfessorRylieGreen

Faculty of EngineeringDepartment of Bioengineering

Head of the Department of Bioengineering
 
 
 
//

Contact

 

+44 (0)20 7594 0943rylie.green

 
 
//

Location

 

3.05Bessemer BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Gilmour:2018:10.1109/EMBC.2018.8513628,
author = {Gilmour, A and Goding, J and Robles, UA and Staples, N and Byrnes-Preston, P and Morley, J and Lovell, NH and Chew, DJ and Green, R},
doi = {10.1109/EMBC.2018.8513628},
journal = {Conf Proc IEEE Eng Med Biol Soc},
pages = {5475--5478},
title = {Stimulation of peripheral nerves using conductive hydrogel electrodes.},
url = {http://dx.doi.org/10.1109/EMBC.2018.8513628},
volume = {2018},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Nerve block via electrical stimulation of nerves requires a device capable of transferring large amounts of charge across the neural interface on chronic time scales. Current metal electrode designs are limited in their ability to safely and effectively deliver this charge in a stable manner. Conductive hydrogel (CH) coatings are a promising alternative to metal electrodes for neural interfacing devices. This study assessed the performance of CH electrodes compared to platinum-iridium (PtIr) electrodes in commercial nerve cuff devices in both the in vitro and acute in vivo environments. CH electrodes were found to have higher charge storage capacities and lower impedances compared to bare PtIr electrodes. Application of CH coatings also resulted in a three-fold increase in in vivo charge injection limit. These significant improvements in electrochemical properties will allow for the design of smaller and safer stimulating devices for nerve block applications.
AU - Gilmour,A
AU - Goding,J
AU - Robles,UA
AU - Staples,N
AU - Byrnes-Preston,P
AU - Morley,J
AU - Lovell,NH
AU - Chew,DJ
AU - Green,R
DO - 10.1109/EMBC.2018.8513628
EP - 5478
PY - 2018///
SN - 1557-170X
SP - 5475
TI - Stimulation of peripheral nerves using conductive hydrogel electrodes.
T2 - Conf Proc IEEE Eng Med Biol Soc
UR - http://dx.doi.org/10.1109/EMBC.2018.8513628
UR - https://www.ncbi.nlm.nih.gov/pubmed/30441576
VL - 2018
ER -