Imperial College London

ProfessorSanjeevGupta

Faculty of EngineeringDepartment of Earth Science & Engineering

Professor of Earth Science
 
 
 
//

Contact

 

+44 (0)20 7594 6527s.gupta

 
 
//

Location

 

Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Ewing:2017:10.1002/2017JE005324,
author = {Ewing, RC and Lapotre, MGA and Lewis, KW and Day, M and Stein, N and Rubin, DM and Sullivan, R and Banham, S and Lamb, MP and Bridges, NT and Gupta, S and Fischer, WW},
doi = {10.1002/2017JE005324},
journal = {Journal of Geophysical Research: Planets},
pages = {2544--2573},
title = {Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars},
url = {http://dx.doi.org/10.1002/2017JE005324},
volume = {122},
year = {2017}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.
AU - Ewing,RC
AU - Lapotre,MGA
AU - Lewis,KW
AU - Day,M
AU - Stein,N
AU - Rubin,DM
AU - Sullivan,R
AU - Banham,S
AU - Lamb,MP
AU - Bridges,NT
AU - Gupta,S
AU - Fischer,WW
DO - 10.1002/2017JE005324
EP - 2573
PY - 2017///
SN - 2169-9097
SP - 2544
TI - Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars
T2 - Journal of Geophysical Research: Planets
UR - http://dx.doi.org/10.1002/2017JE005324
UR - http://hdl.handle.net/10044/1/55746
VL - 122
ER -