Imperial College London

ProfessorSandrineHeutz

Faculty of EngineeringDepartment of Materials

Professor of Functional Molecular Materials
 
 
 
//

Contact

 

+44 (0)20 7594 6727s.heutz

 
 
//

Location

 

B336Bessemer BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

72 results found

Antonio EN, Wicking C, Filip S, Ryan MP, Heutz Set al., 2020, Role of iron speciation in oxidation and deposition at the hexadecane-iron interface, ACS Applied Materials and Interfaces, Vol: 12, Pages: 19140-19152, ISSN: 1944-8244

Interactions between iron surfaces and hydrocarbons are the basis for a wide range of materials synthesis processes and novel applications, including sensing. However, in diesel engines these interactions can lead to deposit formation that reduces performance, lowers efficiency, and increases emissions. Here, we present a global study to understand deposition at iron-hexadecane interfaces. We use a combination of spectroscopy, microscopy, and mass spectrometry to investigate surface reactions, bulk chemistry, and deposition processes. A dynamic equilibrium between the oxidation products, both at the surface and in solution, determines the deposition at the surface. Considering the solution and the surface in parallel, we find that the iron speciation affects the morphology, composition, and quantity of the deposit at the surface, as well as the oxidation of hexadecane. Fe(II) and Fe(III) both promote the decomposition of peroxides-intermediates in the oxidation of hexadecane-but through noncatalytic and catalytic mechanisms, respectively. In contrast, Fe(0) is proposed to initiate hexadecane autoxidation during its oxidation to Fe(III). We find that in all cases, the surfaces exclusively contain Fe(III) following heat treatment with hexadecane. Upon subsequent exposure at room temperature, Fe(III) species are found to promote oxidation; this finding is particularly concerning for hybrid vehicles where longer time periods are expected between engine operation. Our work provides a foundation for the development of strategies that disrupt the role of iron in the degradation of hexadecane to ultimately reduce oxidation and deposition in diesel engines.

Journal article

Kim DK, Lubert-Perquel D, Heutz S, 2020, Correction: Comparison of organic and inorganic layers for structural templating of pentacene thin films, Materials Horizons, Vol: 7, Pages: 299-299, ISSN: 2051-6355

Correction for ‘Comparison of organic and inorganic layers for structural templating of pentacene thin films’ by Dong Kuk Kim et al., Mater. Horiz., 2019, DOI: 10.1039/c9mh00355j.The authors wish to amend the Acknowledgements section of the originally published manuscript. The correct Acknowledgements section is shown below.

Journal article

Kim DK, Lubert-Perquel D, Heutz S, 2020, Comparison of organic and inorganic layers for structural templating of pentacene thin films, Materials Horizons, Vol: 7, Pages: 289-298, ISSN: 2051-6355

Pentacene is a key organic semiconductor, which has achieved prominence in transistor applications and as an archetypal material for singlet fission, the process whereby the absorption of one photon leads to the formation of two triplet states. Functional properties of molecules are highly anisotropic, and control over the molecular orientation in thin films with structural templating is commonly implemented as a route for governing the morphology and structure of organic films. Among the structural templating layers, 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) and copper (I) iodide (CuI) have been shown to effectively template aromatic systems such as phthalocyanines. Here, we extend their use to pentacene thin films and find that a successful transition to a flat-lying arrangement is achieved with CuI films grown at high temperatures, but not with PTCDA. As a result, we postulate a model based on quadrupole interactions as the driving force behind the molecular orientation of pentacene. A 0.25 eV increase in work function and a two-fold increase in absorption are recorded for the induced flat-lying orientation. Therefore, our templating methodology provides design opportunities for optoelectronic devices that require a predominantly flat-lying orientation.

Journal article

Tseng H-H, Serri M, Harrison N, Heutz Set al., 2019, Properties and degradation of manganese(III) porphyrin thin films formed by high vacuum sublimation, Journal of Porphyrins and Phthalocyanines, Vol: 23, Pages: 1515-1522, ISSN: 1088-4246

Manganese porphyrins are of interest due to the optical, electronic and magnetic properties of the central metal ion, coupled to the low bandgap of the polyaromatic ring. These attractive characteristics are harnessed in solutions or in ultra-thin films, such as, for example, self-assembled monolayers. However, for devices, thicker films deposited using a controlled and reproducible method are required. Here we present the morphological, structural, chemical and optical properties of manganese(III) tetraphenylporphyrin chloride (MnTPPCl) thin films deposited using organic molecular beam deposition, typically employed to process analogue molecules for applications such as organic photovoltaics. We find, using a combination of UV-vis and X-ray photoelectron spectroscopies, that the sublimation process leads to the scission of the Mn–Cl bond. The resultant film is a Mn(II)TPP:Mn(III)TPPCl blend where approximately half the molecules have been reduced. Following growth, exposure to air oxidizes the Mn(II)TPP molecule. Through quantitative analysis of the time-dependent optical properties, the oxygen diffusion coefficient (D) ∼1.9×10−17cm2/s is obtained, corresponding to a slow bulk oxidation following fast oxidation of a 8-nm-thick surface layer. The bulk diffusion D is lower than for analogous polycrystalline films, suggestion that grain boundaries, rather than molecular packing, are the rate-limiting steps in oxidation of molecular films. Our results highlight that the stability of the axial ligands should be considered when depositing metal porphyrins from the vapor phase, and offer a solvent-free route to obtain reproducible and smooth thin films of complex materials for engineering film functionalities.

Journal article

Wu Z, Robaschik P, Fleet L, Felton S, aeppli G, Heutz Set al., 2019, Controlling ferromagnetic ground states and solitons in thin films and nanowires built from iron phthalocyanine chains, Advanced Functional Materials, Vol: 29, ISSN: 1616-301X

Iron phthalocyanine (FePc) is a molecular semiconductor whose building blocks are one-dimensional ferromagnetic chains. We show that its optical and magnetic properties are controlled by the growth strategy, obtaining extremely high coercivities of over 1 T and modulating the exchange constant between 15 and 29 K through tuning the crystal phase by switching from thin films with controlled orientations, to ultralong nanowires. Magnetisation measurements are analysed using concepts and formulas with broad applicability to all one-dimensional ferromagnetic chains. They show that FePc is best described by a Heisenberg model with moments preferentially lying in the molecular planes. The chain Hamiltonian is very similar to that for the classic inorganic magnet CsNiF3, but with ferromagnetic rather than antiferromagnetic interchain interactions. The data at large magnetic fields are well-described by the soliton picture, where the dominant degrees of freedom are moving one-dimensional magnetic domain walls and at low temperatures and fields by the “super-Curie-Weiss” law characteristic of nearly one-dimensional xy and Heisenberg ferromagnets. The ability to control the molecular orientation and ferromagnetism of FePc systems, and produce them on flexible substrates, together with excellent transistor characteristics reported previously for phthalocyanine analogues, makes them potentially useful for magneto-optical and spintronic devices.

Journal article

Leber R, Wilson L, Robaschik P, Inkpen M, Payne D, Long N, Albrecht T, Hirjibehedin C, Heutz Set al., 2019, Vacuum deposition of biferrocene thin films: growth strategies for stability and tuneable magnetism, 257th National Meeting of the American-Chemical-Society (ACS), Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727

Conference paper

Lubert-Perquel D, Kim DK, Kay C, Robaschik P, Heutz Set al., 2019, Growth, morphology and structure of mixed pentacene films, Journal of Materials Chemistry C, Vol: 7, Pages: 289-296, ISSN: 2050-7526

Thin films of pentacene and p-terphenyl were grown via organic molecular beam deposition to enable solid-state dilution of functional molecules (pentacene) in an inert matrix (p-terphenyl) at higher concentrations than permitted by traditional crystal growth methods, such as melts. Growth rates were first optimised for single component films to ensure a precise control over the dopant/host concentrations when the mixed films were deposited. Both thin film and bulk phases can be identified in pentacene growths, with the precise lattice parameters dependent on the deposition rates. The effect on the microstructure, resulting from progressive dilution of pentacene in a p-terphenyl host, was then investigated. Although disorder increases and the crystallite size decreases in the mixture, with a minimum at a 1 : 1 ratio, phase segregation is not observed on the length scale (limit) that can be probed in our measurements. This indicates that the mixed films form homogeneous solid-solutions that may be employed for the investigation of solid-state phenomena. Our methodology can be extended to other compatible host-dopant systems used in optoelectronic and spintronic devices.

Journal article

Lubert-Perquel D, Salvadori E, Dyson M, Stavrinou PN, Montis R, Nagashima H, Kobori Y, Heutz S, Kay CWMet al., 2018, Identifying triplet pathways in dilute pentacene films, NATURE COMMUNICATIONS, Vol: 9, ISSN: 2041-1723

Journal article

Leber R, Wilson LE, Robaschik P, Inkpen MS, Payne DJ, Long NJ, Albrecht T, Hirjibehedin CF, Heutz Set al., 2017, High Vacuum Deposition of Biferrocene Thin Films on Room Temperature Substrates, Chemistry of Materials, Vol: 29, Pages: 8663-8669, ISSN: 0897-4756

Metallocenes are a promising candidate for future spintronic devices due to their versatile and tunable magnetic properties. However, single metallocenes, e.g., ferrocene, sublimate below room temperature, and therefore the implementation for future applications is challenging. Here, a method to prepare biferrocene thin films using organic molecular beam deposition (OMBD) is presented, and the effect of substrate and deposition rate on the film structure and morphology as well as its chemical and magnetic properties is investigated. On Kapton and Si substrates, biferrocene interacts only weakly with the substrate, and distinct grains scattered over the surface are observed. By incorporating a 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) seeding layer and depositing biferrocene at high deposition rates of 1.0 Å s–1, it is possible to achieve a well-ordered densely packed film. With spintronic applications in mind, the magnetic properties of the thin films are characterized using superconducting quantum interference device (SQUID) magnetometry. Whereas initial SQUID measurements show weak ferromagnetic behavior up to room temperature due to oxidized molecule fragments, measurements of biferrocene on PTCDA capped with LiF show the diamagnetic behavior expected of biferrocene. Through the successful deposition of biferrocene thin films and the ability to control the spin state, these results demonstrate a first step toward metallocene-based spintronics.

Journal article

Robaschik P, Ma Y, Din S, Heutz Set al., 2017, Formation of ferromagnetic molecular thin films from blends by annealing, BEILSTEIN JOURNAL OF NANOTECHNOLOGY, Vol: 8, Pages: 1469-1475, ISSN: 2190-4286

We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton) substrates kept at room temperature. The MnPc:TCNQ films are found to be entirely amorphous due to the size mismatch of the molecules. However, by annealing while covering the samples highly crystalline MnPc films in the β-polymorph can be obtained at 60 °C lower than when starting with pure MnPc films. The resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K.

Journal article

Alexander JA, Scheltens FJ, Drummy LF, Durstock MF, Gilchrist JB, Heutz S, McComb DWet al., 2017, Measuring Optical Absorption in Organic Photovoltaics Using Monochromated Electron Energy-Loss Spectroscopy, IEEE 44th Photovoltaic Specialist Conference (PVSC), Publisher: IEEE, Pages: 966-969, ISSN: 0160-8371

Conference paper

Fleet LR, Stott J, Villis B, Din S, Serri M, Aeppli G, Heutz S, Nathan Aet al., 2017, Self-Assembled Molecular Nanowires for High-Performance Organic Transistors, ACS Applied Materials and Interfaces, Vol: 9, Pages: 20686-20695, ISSN: 1944-8244

While organic semiconductors provide tantalizing possibilities for low-cost, light-weight, flexible electronic devices, their current use in transistors—the fundamental building block—is rather limited as their speed and reliability are not competitive with those of their inorganic counterparts and are simply too poor for many practical applications. Through self-assembly, highly ordered nanostructures can be prepared that have more competitive transport characteristics; however, no simple, scalable method has been discovered that can produce devices on the basis of such nanostructures. Here, we show how transistors of self-assembled molecular nanowires can be fabricated using a scalable, gradient sublimation technique, which have dramatically improved characteristics compared to those of their thin-film counterparts, both in terms of performance and stability. Nanowire devices based on copper phthalocyanine have been fabricated with threshold voltages as low as −2.1 V, high on/off ratios of 105, small subthreshold swings of 0.9 V/decade, and mobilities of 0.6 cm2/V s, and lower trap energies as deduced from temperature-dependent properties, in line with leading organic semiconductors involving more complex fabrication. High-performance transistors manufactured using our scalable deposition technique, compatible with flexible substrates, could enable integrated all-organic chips implementing conventional as well as neuromorphic computation and combining sensors, logic, data storage, drivers, and displays.

Journal article

Eguchi K, Heutz S, Awaga K, 2017, Templating effects of tetrakis(thiadiazole) porphyrazine on the structure and optical properties of copper phthalocyanine thin films, Journal of Porphyrins and Phthalocyanines, Vol: 21, Pages: 322-326, ISSN: 1088-4246

Molecular templating is an attractive method to improve the crystallinity and control the molecular orientations of organic thin films. Here, we report on the templating effects of an organic nn-type semiconductor, tetrakis(thiadiazole)porphyrazine (H2TTDPz), on the structure and optical absorption of a pp-type semiconductor, copper phthalocyanine (CuPc). X-ray diffraction measurements for the double layer thin films, CuPc/H2TTDPz, indicate a face-on orientation of CuPc, which is replicating the structure of the H2TTDPz thin films, even though the CuPc thin films usually form edge-on-type thin films. The optical absorption measurements show new low-energy transitions in the templated CuPc films.

Journal article

Gilchrist JB, Heutz S, McComb DW, 2017, Revealing structure and electronic properties at organic interfaces using TEM, Current Opinion in Solid State and Materials Science, Vol: 21, Pages: 68-76, ISSN: 1359-0286

Molecules and atoms at material interfaces have properties that are distinct from those found in the bulk. Distinguishing the interfacial species from the bulk species is the inherent difficulty of interfacial analysis. For organic photovoltaic devices, the interface between the donor and acceptor materials is the location for exciton dissociation. Dissociation is thought to occur via a complex route effected by microstructure and the electronic energy levels. The scale of these devices and the soft nature of these materials create an additional level of difficulty for identification and analysis at these interfaces. The transmission electron microscope (TEM) and the spectroscopic techniques it incorporates can allow the properties of the donor-acceptor interfaces to be revealed. Cross-sectional sample preparation, using modern focused ion beam instruments, enables these buried interfaces to be uncovered with minimal damage for high resolution analysis. This powerful instrument combination has the ability to draw conclusions about interface morphology, structure and electronic properties of organic donor-acceptor interfaces at the molecular scale. Recent publications have demonstrated these abilities, and this article aims to summarise some of that work and provide scope for the future.

Journal article

Gonzalez Arellano DL, Bhamrah Harley J, Yang J, Gilchrist JB, McComb, Ryan MP, Heutz SEMet al., 2017, Room temperature routes towards the creation of zinc oxide films from molecular precursors, ACS Omega, Vol: 2, Pages: 98-104, ISSN: 2470-1343

The advent of “flexible” electronics on plastic substrates with low melting points requires the development of thin film deposition techniques that operate at low temperatures. This is easily achieved with vacuum or solution-processed molecular or polymeric semiconductors, but oxide materials remain a significant challenge. Here we show that zinc oxide (ZnO) can be prepared using only room-temperature processes, using the molecular thin film precursor zinc phthalocyanine (ZnPc), followed by vacuum ultra-violet light treatment to elicit degradation of the organic components and transformation of the deposited film to oxide material. The degradation mechanism was assessed by studying the influence of the atmosphere during the reaction: it was particularly sensitive to oxygen pressure in the chamber and optimal degradation conditions were established as 3 mbar with 40% oxygen in nitrogen. The morphology of the film was relatively unchanged during the reaction, but detailed analysis of itscomposition using both scanning transmission electron microscopy (STEM) and secondary ion mass spectrometry (SIMS) revealed that a 40 nm thick layer containingZnO results from the 100 nm thick precursor after complete reaction. Our methodology represents a simple route for the fabrication of oxides and multilayer structuresthat can be easily integrated into current molecular thin film growth setups,without the need for a high temperature step.

Journal article

Alexandra J Ramadan, Fearn S, Tim Jones, Sandrine Heutz, Luke A Rochfordet al., 2016, Film Formation of Non-Planar Phthalocyanines on Copper (I) Iodide, RSC Advances, Vol: 6, Pages: 95227-95231, ISSN: 2046-2069

Structural templating is frequently used in organic photovoltaic devices to control the properties of the functional layersand therefore improve efficiencies. Modification of the substrate temperatures has also been shown to impact thestructure and morphology of phthalocyanine thin films. Here we combine templating by copper iodide and high substratetemperature growth and study its effect on the structure and morphology of two different non-planar phthalocyanines,chloroaluminium (ClAlPc) and vanadyl (VOPc) phthalocyanine. X-ray diffraction, atomic force microscopy and low energyion scattering show that both the morphology and the structure of the films are starkly different in every case, highlightingthe versatility of phthalocyanine film growth.

Journal article

Alexander JA, Scheltens FJ, Drummy LF, Durstock MF, Gilchrist JB, Heutz S, McComb DWet al., 2016, Measurement of optical properties in organic photovoltaic materials using monochromated electron energy-loss spectroscopy, JOURNAL OF MATERIALS CHEMISTRY A, Vol: 4, Pages: 13636-13645, ISSN: 2050-7488

Journal article

Perfetti M, Serri M, Poggini L, Mannini M, Rovai D, Sainctavit P, Heutz SEM, Sessoli Ret al., 2016, Molecular order in buried layers of TbPc2 Single-Molecule Magnets detected by torque magnetometry, Advanced Materials, Vol: 28, Pages: 6946-6951, ISSN: 1521-4095

Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride.

Journal article

Heutz SEM, Eguchi K, Ono Y, Nanojo H, Awaga K, Tseng HH, Robaschik Pet al., 2016, Highly-Oriented Molecular Arrangements and Enhanced Magnetic Interactions in Thin Films of CoTTDPz using PTCDA Templates, Physical Chemistry Chemical Physics, Vol: 18, Pages: 17360-17365, ISSN: 1463-9084

In the present work, the templating effect of thin layers of perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA) on the growth of cobalt tetrakis(thiadiazole)porphyrazine (CoTTDPz) thin films was examined.X-ray diffraction and optical absorption spectra indicate that while CoTTDPz forms amorphous thin filmson the bare substrates, it forms crystalline thin films on the PTCDA templates, in which the molecularplanes of CoTTDPz are considered to be parallel to the substrates. Magnetic measurements reveal asignificantly enhanced antiferromagnetic interaction of CoTTDPz in the templated thin films, with valuesreaching over 13 K. The ability to generate crystalline films and to control their orientation usingmolecular templates is an important strategy in the fields of organic electronics and spintronics in orderto tailor the physical properties of organic thin films to suit their intended application.

Journal article

Goode AE, Porter AE, Kłosowski MM, Ryan MP, Heutz S, McComb DWet al., 2016, Analytical transmission electron microscopy at organic interfaces, Current Opinion in Solid State and Materials Science, Vol: 21, Pages: 55-67, ISSN: 1359-0286

Organic materials are ubiquitous in all aspects of our daily lives. Increasingly there is a need to understand interactions between different organic phases, or between organic and inorganic materials (hybrid interfaces), in order to gain fundamental knowledge about the origin of their structural and functional properties. In order to understand the complex structure–property–processing relationships in (and between) these materials, we need tools that combine high chemical sensitivity with high spatial resolution to allow detailed interfacial characterisation. Analytical transmission electron microscopy (TEM) is a powerful and versatile technique that can fulfil both criteria. However, the application of analytical TEM to organic systems presents some unique challenges, such as low contrast between phases, and electron beam sensitivity. In this review recent analytical TEM approaches to the nanoscale characterisation of two systems will be discussed: the hybrid collagen/mineral interface in bone, and the all-organic donor/acceptor interface in OPV devices.

Journal article

Ramadan AJ, Rochford LA, Moffat J, Mulcahy C, Ryan MP, Jones TS, Heutz Set al., 2016, The morphology and structure of vanadyl phthalocyanine thin films on lithium niobate single crystals, Journal of Materials Chemistry C, Vol: 4, Pages: 348-351, ISSN: 2050-7534

The electric field of ferroelectric materials has been used as a driving force to promote molecular adsorption and control the orientation of small dipolar molecules. This approach has not been investigated on larger polyaromatic molecules, such as those used in organic electronic devices, even though the physical and electronic properties of thin films are strongly dependent on molecular structure and orientation, ultimately affecting device performance. Here we investigate the effects of model ferroelectric surfaces on a dipolar organic semiconducting molecule. Thin films of vanadyl phthalocyanine (VOPc) deposited on to (0001) and (2[1 with combining macron][1 with combining macron]0) lithium niobate were subjected to structural and morphological analysis. Whilst thin films could be grown on these surfaces, no obvious change to their structure or morphology was observed suggesting there was no influence of a surface electrical field or surface chemistry on the film structure, and that the substrate is more complex than previously thought.

Journal article

Tay SER, Goode AE, Weker JN, Cruickshank AA, Heutz S, Porter AE, Ryan MP, Toney MFet al., 2015, Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy, Nanoscale, Vol: 8, Pages: 1849-1853, ISSN: 2040-3372

The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.

Journal article

Rochford LA, Ramadan AJ, Woodruff DP, Heutz S, Jones TSet al., 2015, Ordered growth of vanadyl phthalocyanine (VOPc) on an iron phthalocyanine (FePc) monolayer, Physical Chemistry Chemical Physics, Vol: 17, Pages: 29747-29752, ISSN: 1463-9084

The growth and characterisation of a non-planar phthalocyanine (vanadyl phthalocyanine, VOPc) on a complete monolayer (ML) of a planar phthalocyanine (Iron(II) phthalocyanine, FePc) on an Au(111) surface, has been investigated using ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). The surface mesh of the initial FePc monolayer has been determined and shown to correspond to an incommensurate overlayer, not commensurate as previously reported. Ordered islands of VOPc, with (1 × 1) epitaxy, grow on the FePc layer at submonolayer coverages. The individual VOPc molecules occupy sites directly atop the underlying FePc molecules, indicating that significant intermolecular bonding must occur. It is proposed that this interaction implies that the V[double bond, length as m-dash]O points down into the surface, allowing a Fe–O bond to form. The detailed appearance of the STM images of the VOPc molecules is consistent with previous studies in other VOPc growth studies in which this molecular orientation has been proposed.

Journal article

Heutz S, 2015, MOLECULAR SPINTRONICS A warm exchange, NATURE MATERIALS, Vol: 14, Pages: 967-968, ISSN: 1476-1122

Journal article

Ramadan AJ, Rochford LA, Ryan MP, Jones TS, Heutz Set al., 2015, The influence of polar (0001) zinc oxide (ZnO) on the structure and morphology of vanadyl phthalocyanine (VOPc), RSC Advances, Vol: 5, Pages: 65949-65952, ISSN: 2046-2069

Metal oxide thin films are increasingly utilized in small molecular organic photovoltaic devices to facilitate electron transport and injection. Despite this there is little understanding of the influence these layers have on the structure of adjacent organic semiconductor layers. Here we use both O- and Zn- terminated (0001) single crystal zinc oxide (ZnO) as a model system to investigate the effect of a metal oxide surface on the growth of a molecular semiconductor, vanadyl phthalocyanine (VOPc). The surface reconstructions of these model surfaces are determined and the properties of thin films of VOPc deposited atop are investigated. The nature of the bulk truncation of the surface is found to have pronounced effects on both the morphology and crystal structure of these molecular films. This work highlights the importance of considering the effects of the chemical composition and surface termination of metal oxide films on the structure of adjacent molecular semiconductor films.

Journal article

Ramadan AJ, Rochford LA, Keeble DS, Ryan MP, Heutz SE, Jones TSet al., 2015, Structural templating in a non-planar phthalocyanine using single crystal copper iodide, Advanced Materials Interfaces, ISSN: 2196-7350

Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

Journal article

Tseng H-H, Serri M, Harrison NM, Heutz Set al., 2015, Thin film properties of tetracyanoquinodimethane (TCNQ) with novel templating effects, JOURNAL OF MATERIALS CHEMISTRY C, Vol: 3, Pages: 8694-8699, ISSN: 2050-7526

Journal article

Ramadan AJ, Rochford LA, Keeble DS, Sullivan P, Ryan MP, Jones TS, Heutz Set al., 2014, Exploring High Temperature Templating in Non-planar Phthalocyanine / Copper Iodide (111) Bilayers, Journal of Materials Chemistry C, ISSN: 2050-7526

Elevated substrate temperature growth of phthalocyanine thin films is known to influence film morphology and increase crystallinity. Structural templating offers another method through which the structure of phthalocyanine films can be controlled. Here we combine the use of copper iodide (CuI) and elevated substrate temperatures and investigate their effect on the growth of a non-planar phthalocyanine system. Employing x-ray diffraction and atomic force microscopy we present detailed surface and crystal structure information. Vanadyl phthalocyanine (VOPc) is shown to adopt an edge-on orientation on CuI at ambient substrate temperatures, a behavior in stark contrast to that of previously studied planar phthalocyanine molecules. Elevated substrate temperature is shown to result in changes in the surface morphology and structure demonstrating the versatility of the system. The crystal structure of VOPc was redetermined and used to infer the molecular orientation of the various VOPc/CuI bilayer structures.

Journal article

Gilchrist JB, Basey-Fisher TH, Chang SC, Scheltens F, McComb DW, Heutz Set al., 2014, Uncovering buried structure and interfaces in molecular photovoltaics, Advanced Functional Materials, Vol: 24, Pages: 6473-6483, ISSN: 1616-301X

The processes that generate current in organic photovoltaics are highly dependent on the micro‐ and nano‐structure in the semiconductor layers, especially at the donor‐acceptor interface. Elucidating film properties throughout the thickness of the devices is therefore key to their further development. Here, a methodology is developed to gain unprecedented insights into the structure and composition of the molecular layers within the depth of device structure using high resolution transmission electron microscopy (HRTEM). The technique was applied to three archetypical solar cell configurations consisting of copper phthalocyanine (CuPc) and C60, which have been cross‐sectioned using a focused ion beam method optimized to minimize sample damage. The HRTEM images exhibit lattice fringes in both CuPc and C60, confirming the crystallinity and texture of both materials, and offering novel insight into the growth of C60 onto molecular materials. The donor‐acceptor interface morphology is further studied using scanning transmission electron microscopy (STEM) in combination with energy dispersive X‐ray (EDX) spectroscopy, extending the scope of our methodology to amorphous heterostructures.

Journal article

Rochford LA, Ramadan AJ, Heutz S, Jones TSet al., 2014, Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide, Physical Chemistry Chemical Physics, ISSN: 1463-9084

Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc) / copper iodide (CuI)bilayers at elevated substrate temperatures is presented. Thin CuI (111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM ). Structural measurements show two distinct polymorphs of FePc, with CuI islands edgesnucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro structuring of the templating CuI (111) layer structural and morphological control of the organic film is demonstrated.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00250085&limit=30&person=true